Home
Class 14
MATHS
If A and B are acute angles and SecA = 3...

If A and B are acute angles and SecA = 3,CotB = 4, then the value of `("cosec"^(2)A + sin^(2)B)/(cot^(2)A + sec^(2)B)` is:

A

2

B

`322/323`

C

`1/261`

D

`25/261`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\csc^2 A + \sin^2 B}{\cot^2 A + \sec^2 B}\) given that \(\sec A = 3\) and \(\cot B = 4\). ### Step-by-Step Solution: 1. **Find \(\csc^2 A\)**: - We know that \(\sec A = 3\). - Therefore, \(\cos A = \frac{1}{\sec A} = \frac{1}{3}\). - Using the Pythagorean identity, \(\sin^2 A + \cos^2 A = 1\): \[ \sin^2 A = 1 - \cos^2 A = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] - Thus, \(\csc^2 A = \frac{1}{\sin^2 A} = \frac{9}{8}\). 2. **Find \(\sin^2 B\)**: - We know that \(\cot B = 4\). - Therefore, \(\tan B = \frac{1}{\cot B} = \frac{1}{4}\). - Using the identity \(\sin^2 B + \cos^2 B = 1\) and knowing \(\tan B = \frac{\sin B}{\cos B}\): - Let \(\sin B = x\) and \(\cos B = 4x\). - Then, \(x^2 + (4x)^2 = 1\): \[ x^2 + 16x^2 = 1 \implies 17x^2 = 1 \implies x^2 = \frac{1}{17} \implies \sin^2 B = \frac{1}{17} \] 3. **Find \(\cot^2 A\)**: - We have \(\cos A = \frac{1}{3}\) and \(\sin A = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}\). - Thus, \(\cot A = \frac{\cos A}{\sin A} = \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = \frac{1}{2\sqrt{2}}\). - Therefore, \(\cot^2 A = \left(\frac{1}{2\sqrt{2}}\right)^2 = \frac{1}{8}\). 4. **Find \(\sec^2 B\)**: - We know \(\cot B = 4\), hence \(\tan B = \frac{1}{4}\). - Using the identity \(\sec^2 B = 1 + \tan^2 B\): \[ \sec^2 B = 1 + \left(\frac{1}{4}\right)^2 = 1 + \frac{1}{16} = \frac{17}{16} \] 5. **Substitute values into the expression**: - Now we can substitute into the original expression: \[ \frac{\csc^2 A + \sin^2 B}{\cot^2 A + \sec^2 B} = \frac{\frac{9}{8} + \frac{1}{17}}{\frac{1}{8} + \frac{17}{16}} \] 6. **Calculate the numerator**: - Find a common denominator for the numerator: \[ \text{LCM of } 8 \text{ and } 17 = 136 \] \[ \frac{9}{8} = \frac{9 \times 17}{136} = \frac{153}{136}, \quad \frac{1}{17} = \frac{8}{136} \] \[ \text{Numerator: } \frac{153 + 8}{136} = \frac{161}{136} \] 7. **Calculate the denominator**: - Find a common denominator for the denominator: \[ \text{LCM of } 8 \text{ and } 16 = 16 \] \[ \frac{1}{8} = \frac{2}{16}, \quad \frac{17}{16} = \frac{17}{16} \] \[ \text{Denominator: } \frac{2 + 17}{16} = \frac{19}{16} \] 8. **Final calculation**: - Now substitute back into the expression: \[ \frac{\frac{161}{136}}{\frac{19}{16}} = \frac{161}{136} \times \frac{16}{19} = \frac{161 \times 16}{136 \times 19} \] - Simplifying gives: \[ \frac{2576}{2584} = \frac{322}{323} \] Thus, the final value is \(\frac{322}{323}\).
Promotional Banner