Home
Class 14
MATHS
If (3^(a+3) xx 4^(a+6) xx 25^(a+1))/(27...

If `(3^(a+3) xx 4^(a+6) xx 25^(a+1))/(27^(a-1) xx 8^(a-2) xx 125^(a+4)) = 4/(15^(26))`, then the value of `sqrt(a+9)` is:

A

8

B

5

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{3^{(a+3)} \cdot 4^{(a+6)} \cdot 25^{(a+1)}}{27^{(a-1)} \cdot 8^{(a-2)} \cdot 125^{(a+4)}} = \frac{4}{15^{26}}, \] we will first express all the numbers in terms of their prime factors. ### Step 1: Rewrite the bases in terms of prime factors - \( 4 = 2^2 \) - \( 25 = 5^2 \) - \( 27 = 3^3 \) - \( 8 = 2^3 \) - \( 125 = 5^3 \) Now, substituting these into the equation gives: \[ \frac{3^{(a+3)} \cdot (2^2)^{(a+6)} \cdot (5^2)^{(a+1)}}{(3^3)^{(a-1)} \cdot (2^3)^{(a-2)} \cdot (5^3)^{(a+4)}} = \frac{4}{15^{26}}. \] ### Step 2: Simplify the expression This simplifies to: \[ \frac{3^{(a+3)} \cdot 2^{2(a+6)} \cdot 5^{2(a+1)}}{3^{3(a-1)} \cdot 2^{3(a-2)} \cdot 5^{3(a+4)}} = \frac{4}{15^{26}}. \] Now, simplifying the numerator and denominator: - For \( 2 \): - Numerator: \( 2^{2(a+6)} = 2^{2a + 12} \) - Denominator: \( 2^{3(a-2)} = 2^{3a - 6} \) Thus, the power of \( 2 \) becomes: \[ 2^{(2a + 12) - (3a - 6)} = 2^{(2a + 12 - 3a + 6)} = 2^{(18 - a)}. \] - For \( 3 \): - Numerator: \( 3^{(a+3)} \) - Denominator: \( 3^{3(a-1)} = 3^{3a - 3} \) Thus, the power of \( 3 \) becomes: \[ 3^{(a + 3) - (3a - 3)} = 3^{(a + 3 - 3a + 3)} = 3^{(6 - 2a)}. \] - For \( 5 \): - Numerator: \( 5^{2(a+1)} = 5^{2a + 2} \) - Denominator: \( 5^{3(a+4)} = 5^{3a + 12} \) Thus, the power of \( 5 \) becomes: \[ 5^{(2a + 2) - (3a + 12)} = 5^{(2a + 2 - 3a - 12)} = 5^{(-a - 10)}. \] ### Step 3: Combine the results Putting it all together, we have: \[ \frac{2^{(18 - a)} \cdot 3^{(6 - 2a)} \cdot 5^{(-a - 10)}}{1} = \frac{4}{15^{26}}. \] Now, express \( 4 \) and \( 15^{26} \): \[ 4 = 2^2, \quad 15^{26} = (3 \cdot 5)^{26} = 3^{26} \cdot 5^{26}. \] ### Step 4: Set up the equation Thus, we can equate the powers of the bases: 1. For \( 2 \): \[ 18 - a = 2 \implies a = 16. \] 2. For \( 3 \): \[ 6 - 2a = 26 \implies -2a = 20 \implies a = -10. \] 3. For \( 5 \): \[ -a - 10 = 26 \implies -a = 36 \implies a = -36. \] ### Step 5: Find the value of \( \sqrt{a + 9} \) Since \( a = 16 \) is the only valid solution, we calculate: \[ \sqrt{a + 9} = \sqrt{16 + 9} = \sqrt{25} = 5. \] ### Final Answer The value of \( \sqrt{a + 9} \) is \( 5 \). ---
Promotional Banner