Home
Class 14
MATHS
If sin x - cos x = 0, 0^(@) lt x lt 90^(...

If `sin x - cos x = 0, 0^(@) lt x lt 90^(@)` then the value of `( sec x + cosec x)^(2)` is:

A

8

B

4

C

10

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and find the required value. ### Step 1: Start with the given equation We have: \[ \sin x - \cos x = 0 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ \sin x = \cos x \] ### Step 3: Divide both sides by \(\cos x\) Dividing both sides by \(\cos x\) (since \(\cos x \neq 0\) in the interval \(0 < x < 90^\circ\)): \[ \frac{\sin x}{\cos x} = 1 \] This simplifies to: \[ \tan x = 1 \] ### Step 4: Find the angle \(x\) The angle \(x\) for which \(\tan x = 1\) in the interval \(0 < x < 90^\circ\) is: \[ x = 45^\circ \] ### Step 5: Calculate \(\sec x\) and \(\csc x\) Now we need to find \(\sec x\) and \(\csc x\) at \(x = 45^\circ\): \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] \[ \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] ### Step 6: Calculate \((\sec x + \csc x)^2\) Now we can find: \[ \sec x + \csc x = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] Now squaring this value: \[ (\sec x + \csc x)^2 = (2\sqrt{2})^2 = 4 \cdot 2 = 8 \] ### Final Answer Thus, the value of \((\sec x + \csc x)^2\) is: \[ \boxed{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin 7x = cos 11x , 0^(@) lt x lt 90^(@) , then the value of tan 9x is:

If tan x = 1, 0 lt x lt 90^(@) , then what is the value of 2 sin x cos x?

If sqrt(3) sin x - cos x = 0 and 0 lt x lt 90 , find the value of x .

If tan x = (3)/( 4) , 0 lt x lt 90^(@) , then what is value of sin x cos x ?

If 7 sin ^(2) x + 3 cos ^(2) x =4, 0 lt x lt 90^(@), then what is the value of tan x ?

if (cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@ then what is the value of (sec theta + cosec theta + cot theta)?