Home
Class 14
MATHS
( cos x )/( 1 + sin x ) + ( 1 + sin x)/(...

`( cos x )/( 1 + sin x ) + ( 1 + sin x)/( cos x)` is equal to:

A

`2 cos x`

B

`2 sin x`

C

`2 sec x`

D

`2 cosec x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x}\), we will follow these steps: ### Step 1: Combine the fractions We start by finding a common denominator for the two fractions. The common denominator will be \((1 + \sin x) \cos x\). \[ \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = \frac{\cos^2 x + (1 + \sin x)^2}{(1 + \sin x) \cos x} \] ### Step 2: Expand the numerator Now we will expand the numerator \((1 + \sin x)^2\): \[ (1 + \sin x)^2 = 1 + 2\sin x + \sin^2 x \] So, the numerator becomes: \[ \cos^2 x + 1 + 2\sin x + \sin^2 x \] ### Step 3: Use the Pythagorean identity Using the identity \(\sin^2 x + \cos^2 x = 1\), we can simplify the numerator: \[ \cos^2 x + \sin^2 x = 1 \] Thus, the numerator simplifies to: \[ 1 + 1 + 2\sin x = 2 + 2\sin x \] ### Step 4: Substitute back into the fraction Now we substitute this back into our fraction: \[ \frac{2 + 2\sin x}{(1 + \sin x) \cos x} \] ### Step 5: Factor out the common term We can factor out 2 from the numerator: \[ \frac{2(1 + \sin x)}{(1 + \sin x) \cos x} \] ### Step 6: Simplify the expression Now, we can cancel \((1 + \sin x)\) from the numerator and the denominator (assuming \(1 + \sin x \neq 0\)): \[ \frac{2}{\cos x} \] ### Step 7: Rewrite in terms of secant Finally, we can rewrite this as: \[ 2 \sec x \] ### Final Answer Thus, the expression \(\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x}\) simplifies to: \[ \boxed{2 \sec x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(cos x)/(1-sin x)=(1+cos x+sin x)/(1+cos x-sin x)

sin^(-1)x+cos^(-1)x is equal to

Prove that (1 + sin x-cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x-cos x) = 2cos ecx

The value of (sin x cos y + cos x sin y)^2+(cos x cos y -sin x sin y)^2 is equal to

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int(sin x cos x)/(1+sin x+cos x)

(1+sin x+cos x)^(2)=2(1+sin x)(1+cos x)