Home
Class 14
MATHS
If x+(1)/(x)=13, then the value of x^(2)...

If `x+(1)/(x)=13`, then the value of `x^(2)+(1)/(x^(2))` is:

A

165

B

171

C

167

D

169

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 13 \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 13 \] ### Step 2: Square both sides To eliminate the fraction, we square both sides of the equation: \[ \left(x + \frac{1}{x}\right)^2 = 13^2 \] ### Step 3: Expand the left side Using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \), we expand the left side: \[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 169 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 169 \] ### Step 4: Rearrange the equation Now, we can rearrange the equation to isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} + 2 = 169 \] Subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} = 169 - 2 \] ### Step 5: Calculate the final value Now, we calculate: \[ x^2 + \frac{1}{x^2} = 167 \] Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{167} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+(1)/(x))=3, then the value of (x^(2)+(1)/(x^(2))) is:

If (x-(1)/(x))=4 , then the value of (x^(2)+(1)/(x^(2))) is :

If x+1/(x)=5 , then the value of x^(2)+1/(x^(2)) is:

If x(x-2)= 1 , then the value of x^(2) + (1)/(x^(2)) is .

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x+(1)/(x)=3 and x^(2)+(1)/(x^(3))=5 then the value of x^(3)+(1)/(x^(2)) is