Home
Class 14
MATHS
If a+b = p and ab = pq then find the val...

If a+b = p and ab = pq then find the value of `a^4 + b^4`

A

`p^4 + 2p^2q^2-4p^3q`

B

`p^4 -2p^2q^2-4p^3`

C

`p^4 + 2p^2q^2 + 4p^3`

D

`p^4 - 2q^2q^2 + 4p^3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=1 , ab+bc+ca=-2 and abc=1 then find the value of a^4+b^4+c^4

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____

If a-b=4 and ab=21, find the value of a^(3)-b^(3)

If a-b=4 and ab=45, find the value of a^(3)-b^(3)

If p:q=5:7 and p-q=-4 then find the value of 3p+4q.

If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -ab sqrt(2) +b^(2)) is

if |a|=4,|b|=3 and a.b=6sqrt(3) then find the value of |a xx b|

If a/b=3/4 then find the value of 7a-4b:3a+b .

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))