Home
Class 14
MATHS
If sin theta - cos theta = 0 then find t...

If `sin theta - cos theta = 0` then find the value of cot `theta`

A

A.0

B

B.`sqrt""3`

C

C.`1//sqrt""3`

D

D.1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta - \cos \theta = 0 \) and find the value of \( \cot \theta \), we can follow these steps: ### Step 1: Set the equation to zero We start with the given equation: \[ \sin \theta - \cos \theta = 0 \] ### Step 2: Rearrange the equation We can rearrange this equation to isolate one of the trigonometric functions: \[ \sin \theta = \cos \theta \] ### Step 3: Identify the angle The equation \( \sin \theta = \cos \theta \) is true for specific angles. One of the angles where this holds true is \( \theta = 45^\circ \) (or \( \frac{\pi}{4} \) radians). This is because at \( 45^\circ \), both sine and cosine values are equal: \[ \sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2} \] ### Step 4: Calculate \( \cot \theta \) Now, we need to find \( \cot \theta \). The cotangent function is defined as: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] Since we have established that \( \theta = 45^\circ \): \[ \cot 45^\circ = \frac{\cos 45^\circ}{\sin 45^\circ} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 \] ### Conclusion Thus, the value of \( \cot \theta \) is: \[ \cot \theta = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta-cos theta=0 then find the value of theta

If 3 sin theta - 4 cos theta = 0 , then find the values of tan theta , sec theta and cosec theta .

If sin theta-cos theta=0 then find the value of sin^6theta+cos^6theta

If (cos theta)/(1- sin theta) + (cos theta)/(1 + sin theta) =4 , then find the value of cos theta . Find theta if 0^(@) lt theta lt 90^(@)

If cos ec theta-cot theta=3 then find the value of sin theta

If cot theta=(4)/(3) , then find the value of sin theta,cos theta and cos ectheta in first quadrant. If sin theta+cos ec theta=2 then find the value of sin^(8 )theta+cos ec^(8)theta .

If 5sec theta-12 cosec theta=0 , find the values of sec theta, cos theta and sin theta .

If A=[cos theta-sin theta sin theta cos theta], then find the values of theta satisfying the equation A^(T)+A=I_(2)

If "cosec"^(2) theta + 2 cot^(2) theta=10 , then find the value of sin theta + cos theta when 0^(@) lt theta lt 90^(@)

If cosec theta = (13)/(12) , then find the values of cot theta and sin theta .