Home
Class 14
MATHS
If x^4 + 1//x^4 = 3842 then find the val...

If `x^4 + 1//x^4 = 3842` then find the value of x + 1//x.

A

8

B

6

C

12

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + \frac{1}{x} \) given that \( x^4 + \frac{1}{x^4} = 3842 \). ### Step 1: Relate \( x^4 + \frac{1}{x^4} \) to \( x^2 + \frac{1}{x^2} \) We know that: \[ x^4 + \frac{1}{x^4} = \left( x^2 + \frac{1}{x^2} \right)^2 - 2 \] Let \( y = x^2 + \frac{1}{x^2} \). Then we can rewrite the equation as: \[ x^4 + \frac{1}{x^4} = y^2 - 2 \] So, we have: \[ y^2 - 2 = 3842 \] ### Step 2: Solve for \( y^2 \) Adding 2 to both sides: \[ y^2 = 3842 + 2 = 3844 \] ### Step 3: Find \( y \) Taking the square root of both sides: \[ y = \sqrt{3844} \] Calculating the square root: \[ y = 62 \] ### Step 4: Relate \( y \) to \( x + \frac{1}{x} \) Now, we need to find \( x + \frac{1}{x} \). We know that: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] Let \( z = x + \frac{1}{x} \). Then we can rewrite the equation as: \[ x^2 + \frac{1}{x^2} = z^2 - 2 \] Thus, we have: \[ z^2 - 2 = 62 \] ### Step 5: Solve for \( z^2 \) Adding 2 to both sides: \[ z^2 = 62 + 2 = 64 \] ### Step 6: Find \( z \) Taking the square root of both sides: \[ z = \sqrt{64} \] Calculating the square root: \[ z = 8 \] ### Final Answer Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 + 1/x^2 = 9 , then find the value of x^4 + 1/x^4

If x+1/x=4 then find the value of x-1/x

If x^4 + (1)/(x^4) =727 , then find the value of x^3 - (1)/(x^3)

4^(x-1)=3^(x) then find the value of x

If x - (1)/(2x) = 2 , then find the value of (4x^(4) + 1)/(4x^(2))

If x^(4)+(1)/(x^(4))=14 then find the value of x-(1)/(x) .

If x^2 + 1/x^2 = 6 , find the value of x^4 + 1/x^4

if 3^(x)=4^(x-1) then find the value of x

If x - 1/x = 5 , find the value of x^4 - 1/x^4