Home
Class 14
MATHS
Determine the value of 'x' when (root(3)...

Determine the value of 'x' when `(root(3)(3))^x` = 27

A

1

B

3

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt[3]{3})^x = 27\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ (\sqrt[3]{3})^x = 27 \] We know that \(27\) can be expressed as a power of \(3\): \[ 27 = 3^3 \] So we can rewrite the equation as: \[ (\sqrt[3]{3})^x = 3^3 \] ### Step 2: Rewrite the left side using exponents The cube root of \(3\) can be expressed as: \[ \sqrt[3]{3} = 3^{1/3} \] Thus, we can rewrite the left side of the equation: \[ (3^{1/3})^x = 3^3 \] ### Step 3: Apply the power of a power rule Using the power of a power property \((a^m)^n = a^{m \cdot n}\), we can simplify the left side: \[ 3^{x/3} = 3^3 \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ \frac{x}{3} = 3 \] ### Step 5: Solve for \(x\) To solve for \(x\), multiply both sides by \(3\): \[ x = 3 \cdot 3 \] \[ x = 9 \] Thus, the value of \(x\) is: \[ \boxed{9} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In Fig.27, determine the value of x

If 3^(x+8) =27^(2x+1) , then the value of: [(sqrt(289)/root(3)(216))^(x) // (17/root(4)(1296))^(x)]^(1//2) is:

If 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) , then the value of x is: अगर 5^(root(3)(x))+12^(root(3)(x))= 13^(root(3)(x)) है, तो x का मान होगा:

If 5^(root(3)(x))+12^(root(3)(x))=13^(root(3)(x)) , then the value of x is : यदि 5^(root(3)(x))+12^(root(3)(x))=13^(root(3)(x)) है, तो x का मान ज्ञात करें |

. Determine the value of for which the quadratic equation 2x2+3x+k=0 have both roots real.

If 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) then what is the value of x is? यदि 3^(root(3)(x))+4^(root(3)(x))= 5^(root(3)(x)) है तो x का मान क्या है?

Determine the value of k for which the following function is continuous at x=3.f(x)={(x^(2)-9)/(x-3),x!=3 and k when x=3