Home
Class 14
MATHS
What is the value of (1//sqrt3 + sin 45^...

What is the value of `(1//sqrt3 + sin 45^@)` ?

A

`sqrt3+2`

B

`(sqrt2+sqrt3)//sqrt6`

C

`(1+sqrt6)//sqrt3`

D

`(4+sqrt3)//25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sqrt{3}} + \sin 45^\circ \), we can follow these steps: ### Step 1: Identify the value of \( \sin 45^\circ \) We know that: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \] ### Step 2: Rewrite the expression Now we can rewrite the original expression by substituting the value of \( \sin 45^\circ \): \[ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} \] ### Step 3: Find a common denominator To add these fractions, we need a common denominator. The least common multiple (LCM) of \( \sqrt{3} \) and \( \sqrt{2} \) is \( \sqrt{6} \). Therefore, we can rewrite each fraction: \[ \frac{1}{\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{3}} = \frac{\sqrt{2}}{\sqrt{6}} \] \[ \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{3} \cdot \sqrt{2}} = \frac{\sqrt{3}}{\sqrt{6}} \] ### Step 4: Combine the fractions Now we can add the two fractions: \[ \frac{\sqrt{2}}{\sqrt{6}} + \frac{\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{2} + \sqrt{3}}{\sqrt{6}} \] ### Step 5: Final expression Thus, the value of \( \frac{1}{\sqrt{3}} + \sin 45^\circ \) simplifies to: \[ \frac{\sqrt{2} + \sqrt{3}}{\sqrt{6}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((1)/(sqrt(3))-sin45^(@)) ?

What is the value of tan 60^@ and sin 45^@ ?

What is the value of (1/(sin45^@)-sin45^@) (1/(cos 45^@)-cos45^@)(tan45^@+1/(tan45^@)) ?