Home
Class 14
MATHS
What the simplified value of 2sqrt3-1/sq...

What the simplified value of `2sqrt3-1/sqrt3` ?

A

a. `5sqrt3`

B

b. `5/sqrt3`

C

c. `3sqrt5`

D

d. `3/sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{2\sqrt{3} - 1}{\sqrt{3}} \), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \frac{2\sqrt{3} - 1}{\sqrt{3}} \] ### Step 2: Split the fraction We can separate the terms in the numerator: \[ \frac{2\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} \] ### Step 3: Simplify each term 1. For the first term: \[ \frac{2\sqrt{3}}{\sqrt{3}} = 2 \] 2. For the second term, we can rationalize the denominator: \[ \frac{1}{\sqrt{3}} = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{3}}{3} \] ### Step 4: Combine the simplified terms Now we can combine the simplified terms: \[ 2 - \frac{\sqrt{3}}{3} \] ### Step 5: Find a common denominator To combine these terms, we need a common denominator, which is 3: \[ 2 = \frac{6}{3} \] Thus, we have: \[ \frac{6}{3} - \frac{\sqrt{3}}{3} = \frac{6 - \sqrt{3}}{3} \] ### Final Result The simplified value of \( \frac{2\sqrt{3} - 1}{\sqrt{3}} \) is: \[ \frac{6 - \sqrt{3}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The simplified value of (sqrt3-sqrt2)/(sqrt 12- sqrt8)-1/3xx sqrt27-1/2xx root (3)(27) is closest to?