Home
Class 14
MATHS
What is the value of (cot30^@ + 2//sqrt3...

What is the value of `(cot30^@ + 2//sqrt3)` ?

A

`5//sqrt3`

B

`(1+2sqrt3)//2`

C

`5//6`

D

`2//sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot 30^\circ + \frac{2}{\sqrt{3}} \). ### Step-by-Step Solution: 1. **Find the value of \( \cot 30^\circ \)**: - The cotangent function is the reciprocal of the tangent function. - We know that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \). - Therefore, \( \cot 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3} \). 2. **Substitute \( \cot 30^\circ \) into the expression**: - Now we can substitute the value of \( \cot 30^\circ \) into the expression: \[ \cot 30^\circ + \frac{2}{\sqrt{3}} = \sqrt{3} + \frac{2}{\sqrt{3}} \] 3. **Combine the terms**: - To combine \( \sqrt{3} \) and \( \frac{2}{\sqrt{3}} \), we need a common denominator. The common denominator is \( \sqrt{3} \). - Rewrite \( \sqrt{3} \) as \( \frac{\sqrt{3} \cdot \sqrt{3}}{\sqrt{3}} = \frac{3}{\sqrt{3}} \). - Now we can add the two fractions: \[ \frac{3}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{3 + 2}{\sqrt{3}} = \frac{5}{\sqrt{3}} \] 4. **Final Answer**: - Thus, the value of \( \cot 30^\circ + \frac{2}{\sqrt{3}} \) is \( \frac{5}{\sqrt{3}} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (tan 30^@-sqrt3//2 ) ?

What is the value of (cosec30^(@)-(1)/(sqrt(3))) ?

What is the value of (tan30^(@)+(sqrt(3))/(2)) ?