Home
Class 14
MATHS
What is the simplified value of sqrt18-1...

What is the simplified value of `sqrt18-1/sqrt2` ?

A

`5//sqrt2`

B

`5sqrt2`

C

`2sqrt5`

D

`2//sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{18} - \frac{1}{\sqrt{2}} \), we can follow these steps: ### Step 1: Simplify \( \sqrt{18} \) We can break down \( \sqrt{18} \) as follows: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] ### Step 2: Substitute \( \sqrt{18} \) back into the expression Now we can rewrite the original expression: \[ \sqrt{18} - \frac{1}{\sqrt{2}} = 3\sqrt{2} - \frac{1}{\sqrt{2}} \] ### Step 3: Find a common denominator To combine the terms, we need a common denominator. The common denominator here is \( \sqrt{2} \): \[ 3\sqrt{2} = \frac{3\sqrt{2} \cdot \sqrt{2}}{\sqrt{2}} = \frac{3 \cdot 2}{\sqrt{2}} = \frac{6}{\sqrt{2}} \] ### Step 4: Combine the fractions Now we can combine the two fractions: \[ \frac{6}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{6 - 1}{\sqrt{2}} = \frac{5}{\sqrt{2}} \] ### Step 5: Final expression Thus, the simplified value of \( \sqrt{18} - \frac{1}{\sqrt{2}} \) is: \[ \frac{5}{\sqrt{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If N=(sqrt""9+sqrt""7)div(sqrt""9-sqrt""7) , then what is the simplified value of 1/N?

What is the simplified value of [(4^(m+1/4) xx sqrt(2 xx 2^(m)))/(2sqrt(2^(-m)))]^(1/m) ?