Home
Class 14
MATHS
1 + (1)/(2) + (1)/(4) + (1)/(16) + (1)/(...

`1 + (1)/(2) + (1)/(4) + (1)/(16) + (1)/(32) + (1)/(64)` is approximately equal to ______.

A

`1.5`

B

`2`

C

`2.5`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}\), we can recognize that this is a geometric series. ### Step-by-step Solution: 1. **Identify the series**: The series can be written as: \[ S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} \] 2. **Recognize the first term (A) and common ratio (r)**: - The first term \(A = 1\) - The common ratio \(r = \frac{1}{2}\) 3. **Count the number of terms (n)**: - The number of terms \(n = 6\) (from \(1\) to \(\frac{1}{64}\)) 4. **Use the formula for the sum of a geometric series**: The formula for the sum of the first \(n\) terms of a geometric series is: \[ S_n = \frac{A(1 - r^n)}{1 - r} \] Substituting the values: \[ S_6 = \frac{1(1 - (\frac{1}{2})^6)}{1 - \frac{1}{2}} \] 5. **Calculate \(r^n\)**: \[ (\frac{1}{2})^6 = \frac{1}{64} \] 6. **Substitute \(r^n\) back into the formula**: \[ S_6 = \frac{1(1 - \frac{1}{64})}{\frac{1}{2}} = \frac{1(\frac{63}{64})}{\frac{1}{2}} \] 7. **Simplify the expression**: \[ S_6 = \frac{63}{64} \times 2 = \frac{126}{64} = \frac{63}{32} \] 8. **Convert to decimal**: \[ \frac{63}{32} \approx 1.96875 \] 9. **Approximate the final answer**: Since the question asks for an approximate value, we can round \(1.96875\) to \(2\). ### Final Answer: The approximate value of \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64}\) is approximately equal to **2**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find 1-(1)/(2) + (1)/(4) + (1)/(8) + (1)/(16) - (1)/(32) + .......... oo

((1)/(1.4 )+ (1)/(4.7 ) +(1)/(7.10 )+(1)/(10.13 )+(1)/(13.16)) is equal to

Find 1-(1)/(2)+(1)/(4)-(1)/(8)+(1)/(16)-(1)/(32)+......oo

If 2a - (1)/(2a) = 3, then 16 a ^(4) + (1)/(16 a ^(4)) is equal to

196 1/8 : 1/64 : : 1/16 : 1/?

(1/64)^0+(64)^(-1//2) - (32)^(4//5) is equal to

sin ^ (2) A cos ^ (4) A = (1) / (16) + (1) / (32) cos2A- (1) / (16) cos4A- (1) / (32) cos6A