Home
Class 14
MATHS
Find the value of sqrt (( 2x - 5) ^(2)...

Find the value of
`sqrt (( 2x - 5) ^(2)) + 2 sqrt (( x - 1) ^(2)) if 1 lt x lt 2.`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \sqrt{(2x - 5)^2} + 2\sqrt{(x - 1)^2} \) for \( 1 < x < 2 \). ### Step-by-Step Solution: 1. **Understanding the Square Root**: The expression \( \sqrt{(a)^2} \) is equal to \( |a| \) (the absolute value of \( a \)). Thus, we can rewrite the expression: \[ \sqrt{(2x - 5)^2} = |2x - 5| \quad \text{and} \quad \sqrt{(x - 1)^2} = |x - 1| \] Therefore, the expression becomes: \[ |2x - 5| + 2|x - 1| \] 2. **Analyzing the Absolute Values**: - For \( 1 < x < 2 \): - \( x - 1 > 0 \) implies \( |x - 1| = x - 1 \). - Now, let's evaluate \( 2x - 5 \): - When \( x = 1 \), \( 2x - 5 = 2(1) - 5 = -3 \) (negative). - When \( x = 2 \), \( 2x - 5 = 2(2) - 5 = -1 \) (still negative). - Thus, for \( 1 < x < 2 \), \( 2x - 5 < 0 \) implies \( |2x - 5| = -(2x - 5) = 5 - 2x \). 3. **Substituting Back into the Expression**: Now substituting the absolute values back into the expression: \[ |2x - 5| + 2|x - 1| = (5 - 2x) + 2(x - 1) \] 4. **Simplifying the Expression**: \[ = 5 - 2x + 2x - 2 = 5 - 2 = 3 \] 5. **Conclusion**: Therefore, the value of the expression \( \sqrt{(2x - 5)^2} + 2\sqrt{(x - 1)^2} \) for \( 1 < x < 2 \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Solve sqrt(x-1)/(x-2) lt 0

Find the value of a + b if f(x) = {((a e^(1//|x+2|) - 1)/(2-e^(1//|x+2|)),; -3 lt x lt -2), (b,; x = -2), (sin((x^4-16)/(x^5+32)),; -2 lt x lt 0):} is continuous at x = -2.

If sin x=(sqrt(5))/(3) "and " .(pi)/(3) lt x lt pi find the values of (i) " sin " (x)/(2) " " (ii) " cos " (x)/(2) " " (iii) " tan " (x)/(2)

Prove the inequalities 1 +1/2 x - (x^(2))/8 lt sqrt(1+x) lt 1 +1/2 x at 0 lt x lt oo

Solve for x if sqrt(x^(2)-x) lt (x-1)

Solve, (sqrt(2x-1))/(x-2) lt 1 .