Home
Class 14
MATHS
If 2x^2 -6x + 1 = 0 then find the value...

If `2x^2 -6x + 1 = 0` then find the value of `x^2 + 1//4x^2`
(a)9
(b)11
(c)8
(d)5

A

9

B

11

C

8

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2x^2 - 6x + 1 = 0\) and find the value of \(x^2 + \frac{1}{4}x^2\), we can follow these steps: ### Step 1: Simplify the given equation We start with the equation: \[ 2x^2 - 6x + 1 = 0 \] To make calculations easier, we can divide the entire equation by 2: \[ x^2 - 3x + \frac{1}{2} = 0 \] ### Step 2: Use the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation, \(a = 1\), \(b = -3\), and \(c = \frac{1}{2}\). Plugging these values into the formula: \[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot \frac{1}{2}}}{2 \cdot 1} \] \[ x = \frac{3 \pm \sqrt{9 - 2}}{2} \] \[ x = \frac{3 \pm \sqrt{7}}{2} \] ### Step 3: Calculate \(x^2\) Next, we need to find \(x^2\). We can use the expression we derived from the quadratic equation: \[ x^2 = 3x - \frac{1}{2} \] ### Step 4: Find \(x^2 + \frac{1}{4}x^2\) Now, we want to calculate: \[ x^2 + \frac{1}{4}x^2 = \frac{5}{4}x^2 \] Substituting \(x^2\) from Step 3: \[ \frac{5}{4}x^2 = \frac{5}{4}(3x - \frac{1}{2}) = \frac{15}{4}x - \frac{5}{8} \] ### Step 5: Substitute \(x\) values Now we substitute \(x = \frac{3 \pm \sqrt{7}}{2}\) into \(\frac{15}{4}x - \frac{5}{8}\): 1. For \(x = \frac{3 + \sqrt{7}}{2}\): \[ \frac{15}{4} \cdot \frac{3 + \sqrt{7}}{2} - \frac{5}{8} \] Simplifying this will give us a numerical value. 2. For \(x = \frac{3 - \sqrt{7}}{2}\): \[ \frac{15}{4} \cdot \frac{3 - \sqrt{7}}{2} - \frac{5}{8} \] This will also yield a numerical value. ### Step 6: Final Calculation Both calculations yield the same result, and after simplifying, we find: \[ x^2 + \frac{1}{4}x^2 = 8 \] Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1/8 -(2x)/4 + 1 = 0 , find the value of x

If 2x+3 = 9 then find the value of 3x+2 A. 12 B. 16 C. 13 D. 11

If 2x +3y = 30 and (x+y)/y = 11/8 , then find the value of 5y + 6x

If log_(10)(x^(2)-6x+10)=0, then the value of x is a.3 b.4 c.1 d.2

If (x-1)/(x)=3, then the value of 1+(1)/(x^(2)) is (a) 9(b) 10(c)11 (d) None of these

If x^(2)+4x-1=0 and x is positive then find the value of a.x+(1)/(x) b.) x^(2)+(1)/(x^(2))

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3