Home
Class 14
MATHS
Given sum of a and b is 3. Then, find th...

Given sum of a and b is 3. Then, find the value of `a^3 + 9ab + b^3`.

A

9

B

24

C

18

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^3 + 9ab + b^3 \) given that \( a + b = 3 \), we can follow these steps: ### Step 1: Use the identity for \( a^3 + b^3 \) We know that: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Given \( a + b = 3 \), we can substitute this into the equation. ### Step 2: Find \( a^2 + b^2 \) We can express \( a^2 + b^2 \) in terms of \( a + b \) and \( ab \): \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = 3 \): \[ a^2 + b^2 = 3^2 - 2ab = 9 - 2ab \] ### Step 3: Substitute into the identity Now we can substitute \( a^2 + b^2 \) back into the identity for \( a^3 + b^3 \): \[ a^3 + b^3 = 3(9 - 2ab) - ab \] This simplifies to: \[ a^3 + b^3 = 27 - 6ab - ab = 27 - 7ab \] ### Step 4: Combine with \( 9ab \) Now we need to find \( a^3 + 9ab + b^3 \): \[ a^3 + 9ab + b^3 = (a^3 + b^3) + 9ab \] Substituting the expression we found for \( a^3 + b^3 \): \[ a^3 + 9ab + b^3 = (27 - 7ab) + 9ab \] This simplifies to: \[ a^3 + 9ab + b^3 = 27 + 2ab \] ### Step 5: Determine the value of \( ab \) Since we don't have a specific value for \( ab \), we can express the final answer in terms of \( ab \): \[ a^3 + 9ab + b^3 = 27 + 2ab \] ### Conclusion Without additional information about \( ab \), we cannot find a numeric answer. However, we can conclude that: \[ a^3 + 9ab + b^3 = 27 + 2ab \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a-b and ab=20, find the value of a^(3)-b^(3)

If 2a+b=12 and ab=15 , then find the value of 8a^(3)+b^(3) .

If a-b=4 and ab=21, find the value of a^(3)-b^(3)

If a-b=4 and ab=45, find the value of a^(3)-b^(3)

If a+b=8 and ab=6, find the value of a^(3)+b^(3)

If a-b=6 and ab=20, find the value of a^(3)-b^(3)

If a-b=5 and ab=12, find the value of a^(3)+b^(2)