Home
Class 14
MATHS
If (1 / 2.315) = 0.4319, find the value ...

If (1 / 2.315) = 0.4319, find the value of (1 / 0.0002315).

A

4319

B

2315

C

431.9

D

231.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{0.0002315} \) given that \( \frac{1}{2.315} = 0.4319 \). ### Step-by-Step Solution: 1. **Understand the relationship between the numbers:** We know that \( \frac{1}{2.315} = 0.4319 \). This means that \( 2.315 \) is the reciprocal of \( 0.4319 \). 2. **Convert \( 0.0002315 \) to a more manageable form:** Notice that \( 0.0002315 \) can be expressed in terms of \( 2.315 \): \[ 0.0002315 = \frac{2.315}{10000} \] This is because moving the decimal point four places to the right gives us \( 2.315 \). 3. **Find the reciprocal of \( 0.0002315 \):** To find \( \frac{1}{0.0002315} \), we can use the relation we established: \[ \frac{1}{0.0002315} = \frac{1}{\frac{2.315}{10000}} = \frac{10000}{2.315} \] 4. **Use the known value of \( \frac{1}{2.315} \):** Since we know \( \frac{1}{2.315} = 0.4319 \), we can substitute this into our equation: \[ \frac{10000}{2.315} = 10000 \times \frac{1}{2.315} = 10000 \times 0.4319 \] 5. **Calculate the final value:** Now we perform the multiplication: \[ 10000 \times 0.4319 = 4319 \] Thus, the value of \( \frac{1}{0.0002315} \) is **4319**. ### Final Answer: \[ \frac{1}{0.0002315} = 4319 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(4.263)=0.2346 , find the value of (1)/(0.0004263) .

find the value of log_(2^(-1)) ( 0.0625)

1/8 -(2x)/4 + 1 = 0 , find the value of x

Find the value of : ( 3^0 + 2^-1) /2

If a^2-6a-1=0 then, find the value of a-1/a

Find the value of |[5,2] , [0,-1]|

If A=[(1,0),(1/2,1)] then find the value of A^50

Find the value of (2^(0)+3^(-1))times 3^(2)