Home
Class 14
MATHS
If y -(1)/(y) =4, then find the value of...

If `y -(1)/(y) =4`, then find the value of `(y^(3)-(1)/(y^(3)))`

A

A) 64

B

B) 76

C

C) 88

D

D) 90

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y - \frac{1}{y} = 4 \) and find the value of \( y^3 - \frac{1}{y^3} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ y - \frac{1}{y} = 4 \] ### Step 2: Cube both sides Cubing both sides gives us: \[ \left( y - \frac{1}{y} \right)^3 = 4^3 \] Calculating \( 4^3 \): \[ 4^3 = 64 \] So we have: \[ \left( y - \frac{1}{y} \right)^3 = 64 \] ### Step 3: Use the identity for cubing a binomial We can use the identity: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] In our case, let \( a = y \) and \( b = \frac{1}{y} \). Therefore: \[ \left( y - \frac{1}{y} \right)^3 = y^3 - \frac{1}{y^3} - 3 \left( y \cdot \frac{1}{y} \right) \left( y - \frac{1}{y} \right) \] This simplifies to: \[ y^3 - \frac{1}{y^3} - 3(y - \frac{1}{y}) \] ### Step 4: Substitute known values We know \( y - \frac{1}{y} = 4 \). Therefore: \[ y^3 - \frac{1}{y^3} - 3(4) = 64 \] This simplifies to: \[ y^3 - \frac{1}{y^3} - 12 = 64 \] ### Step 5: Solve for \( y^3 - \frac{1}{y^3} \) Now, we can isolate \( y^3 - \frac{1}{y^3} \): \[ y^3 - \frac{1}{y^3} = 64 + 12 \] Calculating this gives: \[ y^3 - \frac{1}{y^3} = 76 \] ### Final Answer Thus, the value of \( y^3 - \frac{1}{y^3} \) is: \[ \boxed{76} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y+(1)/(y)=3 then the value of y^(5)+(1)/(y^(5)) is

If (1)/((343)^(3y+2))=49 ,then find the value of y.

If (x)/(y)+(y)/(x)=-1,[x,y!=0], then find the value of x^(3)-y^(3)

y/7 + (y-4)/3=2 find the value of y

If x+y+z=0 and xyz=1, then find the value of (1)/(1-x^(3))+(1)/(1-y^(3))+(1)/(1-z^(3))

If ((2x-y)/(x+2y))=(1)/(2), then find the value of ((3x-y)/(3x+y))