Home
Class 14
MATHS
Find x if 2sin^(2)x -1=0...

Find x if `2sin^(2)x -1=0`

A

`""_(4)^(pi)`

B

`""_(2)^(pi)`

C

0

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sin^2 x - 1 = 0 \), we can follow these steps: ### Step 1: Rearrange the equation Start with the given equation: \[ 2\sin^2 x - 1 = 0 \] Add 1 to both sides: \[ 2\sin^2 x = 1 \] ### Step 2: Divide by 2 Now, divide both sides by 2: \[ \sin^2 x = \frac{1}{2} \] ### Step 3: Take the square root Next, take the square root of both sides. Remember to consider both the positive and negative roots: \[ \sin x = \pm \sqrt{\frac{1}{2}} = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### Step 4: Find the angles Now, we need to find the angles \( x \) for which \( \sin x = \frac{\sqrt{2}}{2} \) and \( \sin x = -\frac{\sqrt{2}}{2} \). 1. For \( \sin x = \frac{\sqrt{2}}{2} \): - The angles are: \[ x = 45^\circ + 360^\circ n \quad \text{or} \quad x = 135^\circ + 360^\circ n \quad (n \in \mathbb{Z}) \] - In radians, this is: \[ x = \frac{\pi}{4} + 2\pi n \quad \text{or} \quad x = \frac{3\pi}{4} + 2\pi n \] 2. For \( \sin x = -\frac{\sqrt{2}}{2} \): - The angles are: \[ x = 225^\circ + 360^\circ n \quad \text{or} \quad x = 315^\circ + 360^\circ n \quad (n \in \mathbb{Z}) \] - In radians, this is: \[ x = \frac{5\pi}{4} + 2\pi n \quad \text{or} \quad x = \frac{7\pi}{4} + 2\pi n \] ### Final Answer Thus, the general solutions for \( x \) are: \[ x = \frac{\pi}{4} + 2\pi n, \quad x = \frac{3\pi}{4} + 2\pi n, \quad x = \frac{5\pi}{4} + 2\pi n, \quad x = \frac{7\pi}{4} + 2\pi n \quad (n \in \mathbb{Z}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of solutions of sin^(2)x-sin x-1=0 in [-2 pi,2 pi]

find the number of solution of sin^(2) x-sin x-1=0 in [-2pi, 2pi] .

Find the set of values of x satisfying 2sin^(2)x-3sin x+1>=0

Solve 2sin^(2)x-sin x-1>0

Find lim{x rarr0}(2sin^(2)x+sin x-1)/(2sin^(2)x-3sin x+1)

Find the set of all x in [0, pi] for which 2sin^(2)x - 3sin x + 1 ge 0 .

Find domain 2sin x+1>=0

Find the roots of the following equations: (a) |sin x|=sin x+1 (b) x^(2)-2|x|-3=0

Find the number of solution of sin^(2)x cos^(2)x=1+cos^(2)x sin^(4)x in the interval [0,2 pi].

Find the range of f(x)=(2sin^(2)x+2sin x+3)/(sin^(2)x+sin x+1)