Home
Class 14
MATHS
If x = 1+ sqrt(2), then find the value o...

If `x = 1+ sqrt(2)`, then find the value of `sqrt(x) + (1/sqrt(x))`.

A

2.1014

B

2.1973

C

1.9996

D

1.9876

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) given that \( x = 1 + \sqrt{2} \). ### Step-by-Step Solution: 1. **Identify the value of \( x \)**: \[ x = 1 + \sqrt{2} \] 2. **Find \( \sqrt{x} \)**: We need to calculate \( \sqrt{x} \): \[ \sqrt{x} = \sqrt{1 + \sqrt{2}} \] 3. **Find \( \frac{1}{\sqrt{x}} \)**: To find \( \frac{1}{\sqrt{x}} \), we first rationalize it: \[ \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{1 + \sqrt{2}}} \] To rationalize, multiply the numerator and denominator by \( \sqrt{1 - \sqrt{2}} \): \[ \frac{1}{\sqrt{1 + \sqrt{2}}} \cdot \frac{\sqrt{1 - \sqrt{2}}}{\sqrt{1 - \sqrt{2}}} = \frac{\sqrt{1 - \sqrt{2}}}{\sqrt{(1 + \sqrt{2})(1 - \sqrt{2})}} = \frac{\sqrt{1 - \sqrt{2}}}{\sqrt{1 - 2}} = \frac{\sqrt{1 - \sqrt{2}}}{\sqrt{-1}} = i\sqrt{1 - \sqrt{2}} \] However, we will use a different approach to find \( \frac{1}{\sqrt{x}} \) directly. 4. **Calculate \( \sqrt{x} + \frac{1}{\sqrt{x}} \)**: Let \( y = \sqrt{x} + \frac{1}{\sqrt{x}} \). We can square both sides: \[ y^2 = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = x + 2 + \frac{1}{x} \] 5. **Find \( \frac{1}{x} \)**: Since \( x = 1 + \sqrt{2} \), we find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{1 + \sqrt{2}} \] To rationalize: \[ \frac{1}{1 + \sqrt{2}} \cdot \frac{1 - \sqrt{2}}{1 - \sqrt{2}} = \frac{1 - \sqrt{2}}{(1 + \sqrt{2})(1 - \sqrt{2})} = \frac{1 - \sqrt{2}}{1 - 2} = -(1 - \sqrt{2}) = \sqrt{2} - 1 \] 6. **Substitute back into the equation**: Now we substitute \( x \) and \( \frac{1}{x} \) into the equation for \( y^2 \): \[ y^2 = (1 + \sqrt{2}) + 2 + (\sqrt{2} - 1) = 2 + \sqrt{2} + 2 + \sqrt{2} - 1 = 2 + 2\sqrt{2} \] 7. **Final calculation**: Now we have: \[ y^2 = 2 + 2\sqrt{2} \] To find \( y \): \[ y = \sqrt{2 + 2\sqrt{2}} \] 8. **Simplifying \( y \)**: We can factor \( 2 \) out: \[ y = \sqrt{2(1 + \sqrt{2})} = \sqrt{2} \cdot \sqrt{1 + \sqrt{2}} = \sqrt{2} \cdot \sqrt{x} \] ### Conclusion: Thus, the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is \( \sqrt{2 + 2\sqrt{2}} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = 3 + 2 sqrt(2) , then find the value of ( sqrt(x) - (1)/(sqrt(x)) ) .

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7+4sqrt(3), then find the value of sqrt(x)+(1)/(sqrt(x))

If x=7-4sqrt(3) then find the value of sqrt(x)+(1)/(sqrt(x))

If x=cot75^(@) , then find the value of sqrt(x)+(1)/(sqrt(x)) .

If x=4-sqrt(15), find the value of (sqrt(x)+(1)/(sqrt(x)))

if x=9+4sqrt(5) find the value of sqrt(x)-(1)/(sqrt(x))

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)