Home
Class 14
MATHS
What is the value of (sec45^0+1sqrt3)?...

What is the value of `(sec45^0+1sqrt3)?`

A

a. `(2+sqrt3)//2sqrt3`

B

b. `(2+2sqrt3)//sqrt3`

C

c. `(2+2sqrt3)//3`

D

d. `(sqrt6+1)//sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec 45^\circ + \frac{1}{\sqrt{3}} \), we can follow these steps: ### Step 1: Find the value of \( \sec 45^\circ \) The secant function is defined as the reciprocal of the cosine function. Therefore, we need to find \( \cos 45^\circ \). \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \] Thus, \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \sqrt{2} \] ### Step 2: Substitute the value of \( \sec 45^\circ \) into the expression Now that we have \( \sec 45^\circ = \sqrt{2} \), we can substitute this into the original expression: \[ \sec 45^\circ + \frac{1}{\sqrt{3}} = \sqrt{2} + \frac{1}{\sqrt{3}} \] ### Step 3: Combine the terms To combine \( \sqrt{2} \) and \( \frac{1}{\sqrt{3}} \), we need a common denominator. The common denominator for \( \sqrt{3} \) is \( \sqrt{3} \). \[ \sqrt{2} = \frac{\sqrt{2} \cdot \sqrt{3}}{\sqrt{3}} = \frac{\sqrt{6}}{\sqrt{3}} \] Now we can rewrite the expression: \[ \sqrt{2} + \frac{1}{\sqrt{3}} = \frac{\sqrt{6}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{\sqrt{6} + 1}{\sqrt{3}} \] ### Step 4: Final answer Thus, the value of \( \sec 45^\circ + \frac{1}{\sqrt{3}} \) is: \[ \frac{\sqrt{6} + 1}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (sin45^(@)-sqrt(3)) ?

What is the value of sqrt(2)sec45^(@)+((1)/(sqrt(3)))tan30^(@) ?

What is the value of sqrt(2) sec 45^(@)+(1)/sqrt(3) tan 30^(@)

What is the value of ((1)/(sqrt(3))-sin45^(@)) ?