Home
Class 14
MATHS
If (sqrt(x+5)+sqrt(x))/(sqrt(x+5)-sqrt(x...

If `(sqrt(x+5)+sqrt(x))/(sqrt(x+5)-sqrt(x))=5` then find the value of 'x'.

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sqrt{x+5} + \sqrt{x}}{\sqrt{x+5} - \sqrt{x}} = 5, \] we can use the concept of component and dividend theorem. Let's break down the solution step by step. ### Step 1: Cross-Multiply We start by cross-multiplying to eliminate the fraction: \[ \sqrt{x+5} + \sqrt{x} = 5(\sqrt{x+5} - \sqrt{x}). \] ### Step 2: Distribute on the Right Side Distributing the 5 on the right side gives us: \[ \sqrt{x+5} + \sqrt{x} = 5\sqrt{x+5} - 5\sqrt{x}. \] ### Step 3: Rearrange the Equation Now, let's move all terms involving square roots to one side: \[ \sqrt{x+5} + \sqrt{x} - 5\sqrt{x+5} + 5\sqrt{x} = 0. \] This simplifies to: \[ -4\sqrt{x+5} + 6\sqrt{x} = 0. \] ### Step 4: Isolate One Square Root Rearranging gives: \[ 4\sqrt{x+5} = 6\sqrt{x}. \] ### Step 5: Divide Both Sides by 2 Dividing both sides by 2: \[ 2\sqrt{x+5} = 3\sqrt{x}. \] ### Step 6: Square Both Sides Now, square both sides to eliminate the square roots: \[ (2\sqrt{x+5})^2 = (3\sqrt{x})^2. \] This results in: \[ 4(x+5) = 9x. \] ### Step 7: Expand and Rearrange Expanding the left side gives: \[ 4x + 20 = 9x. \] Rearranging this leads to: \[ 20 = 9x - 4x, \] \[ 20 = 5x. \] ### Step 8: Solve for x Dividing both sides by 5 gives: \[ x = 4. \] ### Step 9: Verify the Solution To ensure that our solution is correct, we can substitute \(x = 4\) back into the original equation: \[ \sqrt{4+5} + \sqrt{4} = \sqrt{9} + 2 = 3 + 2 = 5, \] \[ \sqrt{4+5} - \sqrt{4} = \sqrt{9} - 2 = 3 - 2 = 1. \] Thus, \[ \frac{5}{1} = 5, \] which confirms our solution. ### Final Answer The value of \(x\) is \[ \boxed{4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)sqrt(5-x))

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

sqrt(x)+sqrt(5+x)=15/sqrt(5+x)

sqrt(x+5)+sqrt(x-20)=7

(sqrt(8))/(sqrt(5)-sqrt(3))=x+sqrt(6) find x

If x=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) and y=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)), find the value of x^(2)-y^(2)