Home
Class 14
MATHS
If (6 sqrt(3)+7 sqrt(2))/(sqrt(108)+ sqr...

If `(6 sqrt(3)+7 sqrt(2))/(sqrt(108)+ sqrt(50))=a+b sqrt(6)` then find the value of `(6a)/(b)`

A

9

B

19

C

38

D

42

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{6\sqrt{3} + 7\sqrt{2}}{\sqrt{108} + \sqrt{50}} = a + b\sqrt{6}\), we will follow these steps: ### Step 1: Simplify the denominator First, we simplify the square roots in the denominator: \[ \sqrt{108} = \sqrt{36 \cdot 3} = 6\sqrt{3} \] \[ \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} \] Thus, the denominator becomes: \[ \sqrt{108} + \sqrt{50} = 6\sqrt{3} + 5\sqrt{2} \] ### Step 2: Rewrite the equation Now we can rewrite the equation: \[ \frac{6\sqrt{3} + 7\sqrt{2}}{6\sqrt{3} + 5\sqrt{2}} = a + b\sqrt{6} \] ### Step 3: Rationalize the denominator To simplify the left side, we can multiply the numerator and denominator by the conjugate of the denominator: \[ (6\sqrt{3} + 7\sqrt{2})(6\sqrt{3} - 5\sqrt{2}) \quad \text{and} \quad (6\sqrt{3} + 5\sqrt{2})(6\sqrt{3} - 5\sqrt{2}) \] Calculating the denominator: \[ (6\sqrt{3})^2 - (5\sqrt{2})^2 = 108 - 50 = 58 \] Calculating the numerator: \[ (6\sqrt{3})(6\sqrt{3}) - (6\sqrt{3})(5\sqrt{2}) + (7\sqrt{2})(6\sqrt{3}) - (7\sqrt{2})(5\sqrt{2}) \] This simplifies to: \[ 108 - 30\sqrt{6} + 42\sqrt{6} - 70 = 38 + 12\sqrt{6} \] ### Step 4: Combine results Now we have: \[ \frac{38 + 12\sqrt{6}}{58} = a + b\sqrt{6} \] ### Step 5: Split the fraction This can be separated into: \[ \frac{38}{58} + \frac{12\sqrt{6}}{58} = a + b\sqrt{6} \] Thus: \[ a = \frac{38}{58} = \frac{19}{29}, \quad b = \frac{12}{58} = \frac{6}{29} \] ### Step 6: Find \( \frac{6a}{b} \) Now we need to find \( \frac{6a}{b} \): \[ \frac{6a}{b} = \frac{6 \cdot \frac{19}{29}}{\frac{6}{29}} = \frac{6 \cdot 19}{6} = 19 \] ### Final Answer Thus, the value of \( \frac{6a}{b} \) is \( \boxed{19} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))=a+b sqrt(6)

If (5+sqrt(6))/(5-sqrt(6))=a+b sqrt(6) then find the values of a and b

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

If quad sqrt(6)-sqrt(3),b=sqrt(3)-sqrt(2) and c=sqrt(2)-sqrt(6), then find the value of a^(3)+b^(3)+c^(3)-2abc.

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

(5-sqrt(6))/(5+sqrt(6))=a-b sqrt(2) find the values of a and b .

(6+sqrt(3))/(6-sqrt(3))=a+b sqrt(3)

If (5+sqrt(6))/(5-sqrt(6))=a+b sqrt(6) then find a and b

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b