Home
Class 14
MATHS
If (5/7)^(4x).(7/5)^(3x-1)=(7/5)^(6), th...

If `(5/7)^(4x).(7/5)^(3x-1)=(7/5)^(6)`, then find the value of x which satisfies the equation.

A

-1

B

-7

C

1

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\frac{5}{7})^{4x} \cdot (\frac{7}{5})^{(3x-1)} = (\frac{7}{5})^{6}\), we will follow these steps: ### Step 1: Rewrite the equation We can rewrite the left-hand side of the equation by expressing \((\frac{7}{5})^{(3x-1)}\) in terms of \((\frac{5}{7})\): \[ (\frac{5}{7})^{4x} \cdot (\frac{7}{5})^{(3x-1)} = (\frac{5}{7})^{4x} \cdot (\frac{5}{7})^{-(3x-1)} \] ### Step 2: Combine the exponents Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\), we can combine the exponents: \[ (\frac{5}{7})^{4x - (3x - 1)} = (\frac{5}{7})^{4x - 3x + 1} = (\frac{5}{7})^{x + 1} \] ### Step 3: Rewrite the right-hand side The right-hand side of the equation is already in the form of \((\frac{7}{5})^{6}\). We can rewrite it as: \[ (\frac{7}{5})^{6} = (\frac{5}{7})^{-6} \] ### Step 4: Set the exponents equal Now we have: \[ (\frac{5}{7})^{x + 1} = (\frac{5}{7})^{-6} \] Since the bases are the same, we can set the exponents equal to each other: \[ x + 1 = -6 \] ### Step 5: Solve for \(x\) To find \(x\), we subtract 1 from both sides: \[ x = -6 - 1 = -7 \] ### Final Answer Thus, the value of \(x\) that satisfies the equation is: \[ \boxed{-7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x. 3x-5=7-x

Find the value of 5x^2-3x+7 at x=0

find the value of x - 1/x if x = 7-4sqrt5

If (5x)/3-4=(2x)/5 then find the numerical value of 2x – 7.

If x + (2)/(3 + (4)/(5+(7)/(6)))=10 , then the value of x is

(3x-4)/(7)+(7)/(3x-4)=(5)/(2)

If (5x)/2-1/4(6x-5/3) = 7/6 , then the value of x is _________

If (5x-7)/(3)+2 =(4x-3)/(4)+4x , then the value of (8x+5) is

IF (x-5)^3+ (x-6)^3 +(x-7)^3=3 (x-5) (x-6) (x-7) then what is the value of x