Home
Class 14
MATHS
If (x^(32)-1)/(x^(16))=5 then find the v...

If `(x^(32)-1)/(x^(16))=5` then find the value of `(x^(96)-1)/(x^(48))`.

A

40

B

70

C

140

D

180

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{x^{32} - 1}{x^{16}} = 5 \] ### Step 1: Rewrite the equation We can rewrite the left-hand side of the equation: \[ \frac{x^{32} - 1}{x^{16}} = \frac{x^{32}}{x^{16}} - \frac{1}{x^{16}} = x^{16} - \frac{1}{x^{16}} = 5 \] ### Step 2: Let \( y = x^{16} \) Now, we let \( y = x^{16} \). Substituting this into our equation gives: \[ y - \frac{1}{y} = 5 \] ### Step 3: Multiply through by \( y \) To eliminate the fraction, we multiply both sides by \( y \): \[ y^2 - 1 = 5y \] ### Step 4: Rearrange the equation Rearranging gives us a quadratic equation: \[ y^2 - 5y - 1 = 0 \] ### Step 5: Solve the quadratic equation We can solve for \( y \) using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -5, c = -1 \): \[ y = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 + 4}}{2} = \frac{5 \pm \sqrt{29}}{2} \] ### Step 6: Find \( \frac{x^{96} - 1}{x^{48}} \) Next, we need to find the value of: \[ \frac{x^{96} - 1}{x^{48}} \] Using the substitution \( y = x^{16} \): \[ x^{96} = (x^{16})^6 = y^6 \quad \text{and} \quad x^{48} = (x^{16})^3 = y^3 \] Thus, we have: \[ \frac{x^{96} - 1}{x^{48}} = \frac{y^6 - 1}{y^3} \] ### Step 7: Simplify the expression This can be simplified as: \[ \frac{y^6 - 1}{y^3} = y^3 - \frac{1}{y^3} \] ### Step 8: Find \( y^3 - \frac{1}{y^3} \) To find \( y^3 - \frac{1}{y^3} \), we can use the identity: \[ y^3 - \frac{1}{y^3} = \left(y - \frac{1}{y}\right)\left(y^2 + 1 + \frac{1}{y^2}\right) \] We already know \( y - \frac{1}{y} = 5 \). Now we need to find \( y^2 + 1 + \frac{1}{y^2} \). ### Step 9: Calculate \( y^2 + \frac{1}{y^2} \) Using the square of \( y - \frac{1}{y} \): \[ \left(y - \frac{1}{y}\right)^2 = y^2 - 2 + \frac{1}{y^2} \] This gives: \[ 5^2 = y^2 - 2 + \frac{1}{y^2} \implies 25 = y^2 - 2 + \frac{1}{y^2} \implies y^2 + \frac{1}{y^2} = 27 \] ### Step 10: Substitute back to find \( y^3 - \frac{1}{y^3} \) Now we substitute back: \[ y^3 - \frac{1}{y^3} = 5(27 + 1) = 5 \times 28 = 140 \] ### Final Answer Thus, the value of \( \frac{x^{96} - 1}{x^{48}} \) is: \[ \boxed{140} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 5^x=1 ,find the value of x

x+(1)/(x)=5 Find the value of x

If x=(6-sqrt(32))/(2), then find the value of (x^(3)-(1)/(x^(3)))^(2)-6(x^(2)+(1)/(x^(2)))+(x+(1)/(x))

If f(x) = x^5 - 1/x^5 then find the value of f(x) + f(1/x)

Find the value of x : -1/5 = 2/x

If 16x^(2)-p=(4x-(1)/(3))(4x+(1)/(3)) then find the value of p

If 2^(7x-5)=(32)^(x-7) , then find the value of (1)/(2^x)

If 2^(5x)-:2^(x)=root(5)(32). Then find the value of x