Home
Class 14
MATHS
What is the valueof (sqrt()2//3-cosec60^...

What is the valueof `(sqrt()2//3-cosec60^(@))`?

A

`(sqrt()6-6)//3sqrt()3`

B

`(2-2sqrt()3)//sqrt()3`

C

`(1-sqrt()6)//sqrt()2`

D

`(4-sqrt()3)//2sqrt()3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \left( \frac{\sqrt{2}}{3} - \csc 60^\circ \right) \), we will follow these steps: ### Step 1: Find the value of \( \csc 60^\circ \) The cosecant function is the reciprocal of the sine function. Therefore, we need to find \( \sin 60^\circ \) first. \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] ### Step 2: Substitute \( \csc 60^\circ \) back into the expression Now we substitute the value of \( \csc 60^\circ \) into the original expression: \[ \frac{\sqrt{2}}{3} - \csc 60^\circ = \frac{\sqrt{2}}{3} - \frac{2}{\sqrt{3}} \] ### Step 3: Find a common denominator To subtract these fractions, we need a common denominator. The common denominator for \( 3 \) and \( \sqrt{3} \) is \( 3\sqrt{3} \). ### Step 4: Rewrite each term with the common denominator We rewrite each term: \[ \frac{\sqrt{2}}{3} = \frac{\sqrt{2} \cdot \sqrt{3}}{3\sqrt{3}} = \frac{\sqrt{6}}{3\sqrt{3}} \] \[ \frac{2}{\sqrt{3}} = \frac{2 \cdot 3}{3\sqrt{3}} = \frac{6}{3\sqrt{3}} \] ### Step 5: Subtract the fractions Now we can subtract the two fractions: \[ \frac{\sqrt{6}}{3\sqrt{3}} - \frac{6}{3\sqrt{3}} = \frac{\sqrt{6} - 6}{3\sqrt{3}} \] ### Final Answer Thus, the value of the expression \( \left( \frac{\sqrt{2}}{3} - \csc 60^\circ \right) \) is: \[ \frac{\sqrt{6} - 6}{3\sqrt{3}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((1)/(sqrt(3))+cos60^(@)) ?

What is the value of cot 45^(@) +cosec 60^(@)?

What is the value of (cosec 60^(@)-(1)/(2)) ?

What is the value of sqrt(sec^(2)A+"cosec"^(2)A) ?

What is the value of (cosec30^(@)-(1)/(sqrt(3))) ?