Home
Class 14
MATHS
Determine the value of (y-1/y)^(2) when ...

Determine the value of `(y-1/y)^(2)` when `y^(4) + 1/y^(4) = 34`.

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \((y - \frac{1}{y})^2\) given that \(y^4 + \frac{1}{y^4} = 34\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ y^4 + \frac{1}{y^4} = 34 \] 2. **Use the identity for \(y^4 + \frac{1}{y^4}\):** We can relate \(y^4 + \frac{1}{y^4}\) to \(y^2 + \frac{1}{y^2}\) using the identity: \[ y^4 + \frac{1}{y^4} = \left(y^2 + \frac{1}{y^2}\right)^2 - 2 \] Let \(x = y^2 + \frac{1}{y^2}\). Then we can rewrite the equation as: \[ x^2 - 2 = 34 \] 3. **Solve for \(x^2\):** \[ x^2 = 34 + 2 = 36 \] 4. **Take the square root of both sides:** \[ x = \sqrt{36} = 6 \] (We take the positive root since \(y^2 + \frac{1}{y^2}\) is always positive.) 5. **Now relate \(x\) back to \((y - \frac{1}{y})^2\):** We use the identity: \[ y^2 + \frac{1}{y^2} = \left(y - \frac{1}{y}\right)^2 + 2 \] Substituting \(x\): \[ 6 = \left(y - \frac{1}{y}\right)^2 + 2 \] 6. **Solve for \((y - \frac{1}{y})^2\):** \[ \left(y - \frac{1}{y}\right)^2 = 6 - 2 = 4 \] ### Final Answer: Thus, the value of \((y - \frac{1}{y})^2\) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of y: y/4 - 1/2 = y/3

If y= -1, then the value of 1 + (1//y) + (1//y^2) +(1//y^3) + (1//y^4) + (1//y^5) is

If y - (1)/(y) = 3 , then find y^(4) + (1)/(y^(4)) .

find the value of x^2/y^2+y^2/x^2 , when x/y+y/x=1

If 2y + (1)/(2y) = 3 , then 16y^(4) + (1)/(16y^(4)) = "_____" .