Home
Class 14
MATHS
triangleXYZ is right angled at Y. If ang...

`triangleXYZ` is right angled at Y. If `angleZ = 60^(@)` , then find the value of (cotX - `1/3`).

A

`(3sqrt(3)-1)//3`

B

`(2sqrt(3)-sqrt(6))//2sqrt(3)`

C

`-5//3`

D

`(2-sqrt(3))//2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot X - \frac{1}{3} \) in triangle XYZ, which is a right triangle with a right angle at Y and angle Z equal to \( 60^\circ \). ### Step-by-Step Solution: 1. **Identify the Angles in the Triangle:** Since triangle XYZ is a right triangle with the right angle at Y, we have: \[ \angle Y = 90^\circ \] Given that \( \angle Z = 60^\circ \), we can find \( \angle X \) using the fact that the sum of angles in a triangle is \( 180^\circ \): \[ \angle X + \angle Y + \angle Z = 180^\circ \] Substituting the known values: \[ \angle X + 90^\circ + 60^\circ = 180^\circ \] Simplifying this gives: \[ \angle X + 150^\circ = 180^\circ \] Therefore: \[ \angle X = 180^\circ - 150^\circ = 30^\circ \] 2. **Calculate \( \cot X \):** We know that: \[ \cot X = \cot 30^\circ \] The value of \( \cot 30^\circ \) is: \[ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] 3. **Subtract \( \frac{1}{3} \) from \( \cot X \):** Now we need to find \( \cot X - \frac{1}{3} \): \[ \cot X - \frac{1}{3} = \sqrt{3} - \frac{1}{3} \] 4. **Combine the Terms:** To combine \( \sqrt{3} - \frac{1}{3} \), we can express \( \sqrt{3} \) with a common denominator: \[ \sqrt{3} = \frac{3\sqrt{3}}{3} \] Thus: \[ \sqrt{3} - \frac{1}{3} = \frac{3\sqrt{3}}{3} - \frac{1}{3} = \frac{3\sqrt{3} - 1}{3} \] ### Final Answer: The value of \( \cot X - \frac{1}{3} \) is: \[ \frac{3\sqrt{3} - 1}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

DeltaXYZ is right angled at Y .If mangleX=60^(@) , then find the value of (cot Z+2).

DeltaXYZ is right angled at Y. If m angleZ=30^(@) , then find the value of (cosX-1//sqrt(3))