Home
Class 14
MATHS
Find the unit digit of the expression ...

Find the unit digit of the expression
`31^(2)+32^(2)+33^(2)+34^(2)+35^(2)+36^(2)+37^(2)+38^(2)+39^(2)`.

A

1

B

4

C

5

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \(31^2 + 32^2 + 33^2 + 34^2 + 35^2 + 36^2 + 37^2 + 38^2 + 39^2\), we can follow these steps: ### Step 1: Identify the unit digits of each number The unit digits of the numbers from 31 to 39 are: - \(31 \rightarrow 1\) - \(32 \rightarrow 2\) - \(33 \rightarrow 3\) - \(34 \rightarrow 4\) - \(35 \rightarrow 5\) - \(36 \rightarrow 6\) - \(37 \rightarrow 7\) - \(38 \rightarrow 8\) - \(39 \rightarrow 9\) ### Step 2: Calculate the squares of the unit digits Next, we calculate the squares of these unit digits: - \(1^2 = 1\) - \(2^2 = 4\) - \(3^2 = 9\) - \(4^2 = 16\) (unit digit is \(6\)) - \(5^2 = 25\) (unit digit is \(5\)) - \(6^2 = 36\) (unit digit is \(6\)) - \(7^2 = 49\) (unit digit is \(9\)) - \(8^2 = 64\) (unit digit is \(4\)) - \(9^2 = 81\) (unit digit is \(1\)) ### Step 3: List the unit digits of the squares The unit digits of the squares are: - From \(31^2\): \(1\) - From \(32^2\): \(4\) - From \(33^2\): \(9\) - From \(34^2\): \(6\) - From \(35^2\): \(5\) - From \(36^2\): \(6\) - From \(37^2\): \(9\) - From \(38^2\): \(4\) - From \(39^2\): \(1\) ### Step 4: Sum the unit digits Now, we sum these unit digits: \[ 1 + 4 + 9 + 6 + 5 + 6 + 9 + 4 + 1 \] Calculating this step-by-step: - \(1 + 4 = 5\) - \(5 + 9 = 14\) - \(14 + 6 = 20\) - \(20 + 5 = 25\) - \(25 + 6 = 31\) - \(31 + 9 = 40\) - \(40 + 4 = 44\) - \(44 + 1 = 45\) ### Step 5: Find the unit digit of the total sum The unit digit of \(45\) is \(5\). ### Final Answer Thus, the unit digit of the expression \(31^2 + 32^2 + 33^2 + 34^2 + 35^2 + 36^2 + 37^2 + 38^2 + 39^2\) is **5**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find unit digit of 2^(11) !

Find the last digit of the expression: 1^2 + 2^2 + 3^2 + 4^2 + ……..+ 100^2 .

The units' digit in the expression (11^(1)+12^(2)+13^(2)+14^(4)+15^(5)+16^(6)) is

Find the last digit of 2^(35) .

i. 39^(2)-38^(2) iv. 134^(2)-133^(2)

Find Unit digit of 2^(20!).

The unit digit of the expression (1!)^(1!) + (2!)^(2!) + (3!)^(3!) + ……+ (100!)^(100!) :

The unit digit in the expression 36^(234)"*"33^(512)"*"39^(180)-54^(29)"*"25^(123)"*"31^(512) will be