Home
Class 14
MATHS
If (ab-1)/(b)=(cb-1)/(c )=(ac-1)/(a), th...

If `(ab-1)/(b)=(cb-1)/(c )=(ac-1)/(a)`, then find the value of `((a)/(c )+(b)/(a) +(c )/(b))` .

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{ab - 1}{b} = \frac{cb - 1}{c} = \frac{ac - 1}{a} \] Let’s denote this common value as \( k \). Therefore, we can write: 1. \(\frac{ab - 1}{b} = k\) 2. \(\frac{cb - 1}{c} = k\) 3. \(\frac{ac - 1}{a} = k\) From these equations, we can express \( ab - 1 \), \( cb - 1 \), and \( ac - 1 \) in terms of \( k \): 1. \( ab - 1 = kb \) → \( ab = kb + 1 \) → \( ab - kb = 1 \) → \( b(a - k) = 1 \) → \( b = \frac{1}{a - k} \) (1) 2. \( cb - 1 = kc \) → \( cb = kc + 1 \) → \( cb - kc = 1 \) → \( c(b - k) = 1 \) → \( c = \frac{1}{b - k} \) (2) 3. \( ac - 1 = ka \) → \( ac = ka + 1 \) → \( ac - ka = 1 \) → \( a(c - k) = 1 \) → \( a = \frac{1}{c - k} \) (3) Next, we can substitute the expressions for \( b \) and \( c \) from equations (1) and (2) into equation (3) to find relationships among \( a \), \( b \), and \( c \). However, a simpler approach is to assume specific values for \( a \), \( b \), and \( c \) that satisfy the original equation. Let's try \( a = 1 \), \( b = 1 \), and \( c = 1 \): Substituting these values into the original equations: 1. \(\frac{1 \cdot 1 - 1}{1} = 0\) 2. \(\frac{1 \cdot 1 - 1}{1} = 0\) 3. \(\frac{1 \cdot 1 - 1}{1} = 0\) Since all three expressions equal 0, the assumption holds true. Now, we need to find the value of: \[ \frac{a}{c} + \frac{b}{a} + \frac{c}{b} \] Substituting \( a = 1 \), \( b = 1 \), and \( c = 1 \): \[ \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = 1 + 1 + 1 = 3 \] Thus, the value of \( \frac{a}{c} + \frac{b}{a} + \frac{c}{b} \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If abc=8 and (1)/(a)+(1)/(b)+(1)/(c)=(3)/(2), then find the value of ab+bc+ac.

If a=(1)/(2),b=3 and c=1 then find the value of b^(2)-4ac

If ab + bc + ca = 0, then find the value of (b)/((a+b)(b+c))+(c)/((a+c)(c+b))+(a)/((a+b)(c+a))

if a+b+c=6 and (1)/(a)+(1)/(b)+(1)/(c)=(3)/(2) then find (a)/(b)+(a)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)/(2), then find (a)/(b)+(b)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)