Home
Class 14
MATHS
Determine the value of '?' in: ( 1- (1)/...

Determine the value of '?' in: `( 1- (1)/(2) ) ( 1- (1)/(3) ) ( 1- (1)/(4) ) ......... (1- ( 1)/( n) ) = ?`

A

`2/n`

B

`1/n^2`

C

`1/n`

D

`2/n^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) \] ### Step 1: Rewrite each term We can rewrite each term in the product: \[ 1 - \frac{1}{k} = \frac{k-1}{k} \] Thus, we can express the entire product as: \[ (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n} \] ### Step 2: Write the product in fraction form Now, we can write this product as: \[ \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{n-1}{n} = \frac{1 \cdot 2 \cdot 3 \cdots (n-1)}{2 \cdot 3 \cdots n} \] ### Step 3: Simplify the expression Notice that the numerator is \((n-1)!\) and the denominator is \(n!\): \[ \frac{(n-1)!}{n!} = \frac{(n-1)!}{n \cdot (n-1)!} = \frac{1}{n} \] ### Conclusion Thus, we find that: \[ (1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{4}) \ldots (1 - \frac{1}{n}) = \frac{1}{n} \] The value of '?' is: \[ \boxed{\frac{1}{n}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-(1)/(2))(1-(1)/(3))(1-(1)/(4))......*(1-(1)/(n+1))

What is the value of the following? (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))dots(1-(1)/(n-1))(1-(1)/(n))

The value of: (1 + 1/(a+1))(1+1/(a+2)) (1+1/(a+3))(1+1/(a+4)) is

The value of (1 - 1/2) (1 - 1/3) (1 - 1/4)(1 - 1/5) ………(1 - 1/n) is :