Home
Class 14
MATHS
If x^(2) + 4y^(2) + z^(2) - 4x - 2z + 5 ...

If `x^(2) + 4y^(2) + z^(2) - 4x - 2z + 5 = 0`, then find the value of `(y^(10) + x^(5) )/( z^(14) )`

A

32

B

46

C

58

D

60

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + 4y^2 + z^2 - 4x - 2z + 5 = 0 \) and find the value of \( \frac{y^{10} + x^5}{z^{14}} \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ x^2 + 4y^2 + z^2 - 4x - 2z + 5 = 0 \] We will group the terms related to \( x \), \( y \), and \( z \). ### Step 2: Completing the Square for \( x \) For the \( x \) terms: \[ x^2 - 4x \] To complete the square, we take half of the coefficient of \( x \) (which is -4), square it, and add/subtract it: \[ x^2 - 4x = (x - 2)^2 - 4 \] ### Step 3: Completing the Square for \( y \) For the \( y \) terms: \[ 4y^2 = (2y)^2 \] This is already a perfect square. ### Step 4: Completing the Square for \( z \) For the \( z \) terms: \[ z^2 - 2z \] Completing the square: \[ z^2 - 2z = (z - 1)^2 - 1 \] ### Step 5: Substitute Back into the Equation Substituting back into the equation gives: \[ (x - 2)^2 - 4 + (2y)^2 + (z - 1)^2 - 1 + 5 = 0 \] This simplifies to: \[ (x - 2)^2 + (2y)^2 + (z - 1)^2 = 0 \] ### Step 6: Analyzing the Equation Since a sum of squares equals zero, each square must be zero: 1. \( (x - 2)^2 = 0 \) → \( x - 2 = 0 \) → \( x = 2 \) 2. \( (2y)^2 = 0 \) → \( 2y = 0 \) → \( y = 0 \) 3. \( (z - 1)^2 = 0 \) → \( z - 1 = 0 \) → \( z = 1 \) ### Step 7: Substitute Values into the Expression Now we substitute \( x = 2 \), \( y = 0 \), and \( z = 1 \) into the expression: \[ \frac{y^{10} + x^5}{z^{14}} = \frac{0^{10} + 2^5}{1^{14}} \] Calculating this gives: \[ \frac{0 + 32}{1} = 32 \] ### Final Answer Thus, the value of \( \frac{y^{10} + x^5}{z^{14}} \) is: \[ \boxed{32} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4 x^(2) + 9y^(2) + z^(2) + 49 = 12 ( x+ y + z) , then what is the value of (4x + 9y - z) ?

If (x-3)^(2) + (y-5)^(2) + (z-4)^(2) = 0, then the value of (x^2)/(9) + (y^2)/(25) + (z^2)/(16) is

If x = 1, y = 2, z = 5 , then find the value of 3x – 2y + 4z.

If x^(2) + 3y^(2) + 4z^(2)+ 19 = 4 sqrt(3) ( x + y + z) , then the value of ( x - y + 4z) is:

If x^(2) + y^(2) + z^(2) + 12x + 4y + 5=0 find x^(12) + y+ z^(30) = ?