Home
Class 14
MATHS
If the value of sqrt(42) is approximatel...

If the value of `sqrt(42)` is approximately 6.480, then what is the approximate value of `sqrt(6//7)`?

A

`0.925`

B

`0.935`

C

`0.945`

D

`0.955`

Text Solution

AI Generated Solution

The correct Answer is:
To find the approximate value of \( \sqrt{\frac{6}{7}} \), we can use the given information about \( \sqrt{42} \). Here’s a step-by-step solution: ### Step 1: Express \( \sqrt{\frac{6}{7}} \) We start with the expression: \[ \sqrt{\frac{6}{7}} = \sqrt{6} \cdot \frac{1}{\sqrt{7}} \] ### Step 2: Rewrite \( \sqrt{6} \) in terms of \( \sqrt{42} \) To relate \( \sqrt{6} \) and \( \sqrt{7} \) to \( \sqrt{42} \), we can multiply and divide by 7: \[ \sqrt{\frac{6}{7}} = \sqrt{\frac{6 \cdot 7}{7 \cdot 7}} = \sqrt{\frac{42}{49}} = \frac{\sqrt{42}}{\sqrt{49}} \] ### Step 3: Simplify \( \sqrt{49} \) Since \( \sqrt{49} = 7 \), we can substitute this back into our equation: \[ \sqrt{\frac{6}{7}} = \frac{\sqrt{42}}{7} \] ### Step 4: Substitute the value of \( \sqrt{42} \) We know from the problem statement that \( \sqrt{42} \approx 6.480 \): \[ \sqrt{\frac{6}{7}} \approx \frac{6.480}{7} \] ### Step 5: Calculate \( \frac{6.480}{7} \) Now, we perform the division: \[ \frac{6.480}{7} \approx 0.9257142857 \] ### Step 6: Round to three decimal places Rounding \( 0.9257142857 \) gives us approximately: \[ \sqrt{\frac{6}{7}} \approx 0.926 \] ### Conclusion Thus, the approximate value of \( \sqrt{\frac{6}{7}} \) is \( 0.925 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the approximate value of sqrt(8.95)

Find the approximate values of : sqrt(144.02)

Find the approximate value of (1.999)^(6)

7,sqrt(42),6

Using differentials, find the approximate value of sqrt(26)

Using differentials, find the approximate value of sqrt(37)