Home
Class 14
MATHS
Delta DEF is right angled at E. If angl...

`Delta DEF` is right angled at E. If ` angle F = 45^(@)`. then find the value of `(cosec D - 1/ sqrt(3) )`.

A

`( sqrt(6) -1 )/ sqrt3`

B

`( 1- sqrt6)/ sqrt2`

C

`sqrt(3) - 2`

D

`( 2- sqrt(3) )// 2 sqrt(3) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the triangle DEF, which is right-angled at E, and has angle F equal to 45 degrees. We need to find the value of \( \csc D - \frac{1}{\sqrt{3}} \). ### Step 1: Understand the triangle Given that triangle DEF is right-angled at E, we know: - \( \angle E = 90^\circ \) - \( \angle F = 45^\circ \) ### Step 2: Calculate angle D Using the property that the sum of angles in a triangle is 180 degrees, we can find angle D: \[ \angle D + \angle E + \angle F = 180^\circ \] Substituting the known values: \[ \angle D + 90^\circ + 45^\circ = 180^\circ \] \[ \angle D + 135^\circ = 180^\circ \] \[ \angle D = 180^\circ - 135^\circ = 45^\circ \] ### Step 3: Calculate \( \csc D \) Since we found that \( \angle D = 45^\circ \), we can now calculate \( \csc D \): \[ \csc D = \csc 45^\circ \] The cosecant of 45 degrees is: \[ \csc 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{\frac{\sqrt{2}}{2}} = \sqrt{2} \] ### Step 4: Calculate \( \csc D - \frac{1}{\sqrt{3}} \) Now we need to find: \[ \csc D - \frac{1}{\sqrt{3}} = \sqrt{2} - \frac{1}{\sqrt{3}} \] ### Step 5: Simplify the expression To simplify \( \sqrt{2} - \frac{1}{\sqrt{3}} \), we can find a common denominator: \[ \sqrt{2} - \frac{1}{\sqrt{3}} = \frac{\sqrt{2} \cdot \sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{\sqrt{6} - 1}{\sqrt{3}} \] Thus, the final answer is: \[ \csc D - \frac{1}{\sqrt{3}} = \frac{\sqrt{6} - 1}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

DeltaDEF is right angled at E. If mangleF=30^(@) ,then find the value of (cosD-(1)/(sqrt(2))) .

DeltaABC is right angled at B. If mangleA = 45^@ , then find the value of ("cosecC "+ 1//sqrt3) .

DeltaABC is right angled at B . If mangleC=45^(@) , then find the value of (cosecA-sqrt(3)) .