Home
Class 14
MATHS
Find the unit digit in 1!+2!+3!+4!+……….+...

Find the unit digit in `1!+2!+3!+4!+……….+50!`.

A

1

B

3

C

5

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit in the sum \(1! + 2! + 3! + 4! + \ldots + 50!\), we can follow these steps: ### Step 1: Calculate the factorials from \(1!\) to \(4!\) 1. **Calculate \(1!\)**: \[ 1! = 1 \] **Unit digit: 1** 2. **Calculate \(2!\)**: \[ 2! = 2 \times 1 = 2 \] **Unit digit: 2** 3. **Calculate \(3!\)**: \[ 3! = 3 \times 2 \times 1 = 6 \] **Unit digit: 6** 4. **Calculate \(4!\)**: \[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] **Unit digit: 4** ### Step 2: Identify the unit digits of \(5!\) and higher 5. **Calculate \(5!\)**: \[ 5! = 5 \times 4! = 5 \times 24 = 120 \] **Unit digit: 0** From \(5!\) onwards, all factorials will end in 0 because they include the multiplication by 5 and at least one even number (2), which results in a factor of 10. ### Step 3: Sum the unit digits of \(1!\) to \(4!\) 6. **Sum the unit digits**: \[ \text{Unit digit of } (1! + 2! + 3! + 4!) = 1 + 2 + 6 + 4 \] \[ = 13 \] The unit digit of 13 is **3**. ### Step 4: Conclusion Since all factorials from \(5!\) to \(50!\) contribute a unit digit of 0, they do not affect the final unit digit of the sum. Thus, the unit digit in \(1! + 2! + 3! + 4! + \ldots + 50!\) is **3**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the units digit of 8^25 .

Find the units digit of 8^(25)

Find the unit digit of (33)^(123)

Find the unit digit of (12)^(78)

Find the unit digit in 8 ^(96) - 4 ^(16).

Find the unit digit in 8^(96) - 4^(16) .