Home
Class 14
MATHS
DeltaPQR is right angled at Q. If m/ R =...

`Delta`PQR is right angled at Q. If `m/_ R = 60^@` , then find the value of `(secP - 1//sqrt3)`.

A

`(sqrt6-6)//3sqrt3`

B

`(1-3sqrt2)//3`

C

`1//sqrt3`

D

`2//sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Identify the angles in triangle PQR Given that triangle PQR is right-angled at Q and angle R is 60 degrees, we can find angle P using the angle sum property of triangles. **Calculation:** \[ \text{Angle P} + \text{Angle Q} + \text{Angle R} = 180^\circ \] \[ \text{Angle P} + 90^\circ + 60^\circ = 180^\circ \] \[ \text{Angle P} + 150^\circ = 180^\circ \] \[ \text{Angle P} = 180^\circ - 150^\circ = 30^\circ \] ### Step 2: Find sec P The secant function is defined as the reciprocal of the cosine function: \[ \sec P = \frac{1}{\cos P} \] For angle P = 30 degrees: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \sec P = \frac{1}{\cos 30^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] ### Step 3: Calculate sec P - \(\frac{1}{\sqrt{3}}\) Now, we need to find: \[ \sec P - \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \] Combine the fractions: \[ \sec P - \frac{1}{\sqrt{3}} = \frac{2 - 1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] ### Final Answer The value of \(\sec P - \frac{1}{\sqrt{3}}\) is: \[ \frac{1}{\sqrt{3}} \] ---

To solve the problem, we will follow these steps: ### Step 1: Identify the angles in triangle PQR Given that triangle PQR is right-angled at Q and angle R is 60 degrees, we can find angle P using the angle sum property of triangles. **Calculation:** \[ \text{Angle P} + \text{Angle Q} + \text{Angle R} = 180^\circ ...
Promotional Banner

Similar Questions

Explore conceptually related problems

DeltaABC is right angled at B. If mangleA = 45^@ , then find the value of ("cosecC "+ 1//sqrt3) .

DeltaXYZ is right angled at Y. If m angleZ=30^(@) , then find the value of (cosX-1//sqrt(3))