Home
Class 12
MATHS
value of int0^1cot^-1((sqrt(1+sinx)+(sqr...

value of `int_0^1cot^-1((sqrt(1+sinx)+(sqrt(1-sinx)))/((sqrt(1+sinx)-(sqrt(1-sinx)))))dx`

A

`1/4`

B

`1/2`

C

0

D

`1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right) dx, \] we will simplify the expression inside the integral step by step. ### Step 1: Simplifying the Argument of Cotangent Inverse We start with the expression inside the cotangent inverse: \[ \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}. \] Using the half-angle identities, we can express \( \sin x \) in terms of \( \sin \frac{x}{2} \) and \( \cos \frac{x}{2} \): \[ \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}. \] Thus, we can rewrite \( 1 + \sin x \) and \( 1 - \sin x \): \[ 1 + \sin x = 1 + 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2, \] \[ 1 - \sin x = 1 - 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2. \] ### Step 2: Substitute and Simplify Substituting these back into the expression gives: \[ \frac{\sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} + \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2}}}{\sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} - \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2}}. \] This simplifies to: \[ \frac{\sin \frac{x}{2} + \cos \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}{\sin \frac{x}{2} + \cos \frac{x}{2} - (\cos \frac{x}{2} - \sin \frac{x}{2})}. \] ### Step 3: Further Simplification The numerator simplifies to: \[ 2 \cos \frac{x}{2}, \] and the denominator simplifies to: \[ 2 \sin \frac{x}{2}. \] Thus, we have: \[ \frac{2 \cos \frac{x}{2}}{2 \sin \frac{x}{2}} = \cot \frac{x}{2}. \] ### Step 4: Integral of Cotangent Inverse Now we can rewrite the integral: \[ I = \int_0^1 \cot^{-1}(\cot \frac{x}{2}) \, dx. \] Since \( \cot^{-1}(\cot \theta) = \theta \) for \( \theta \) in the range \( (0, \pi) \), we have: \[ I = \int_0^1 \frac{x}{2} \, dx. \] ### Step 5: Evaluate the Integral Calculating the integral: \[ I = \frac{1}{2} \int_0^1 x \, dx = \frac{1}{2} \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{1}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))=? (x is in IV quadrant)

If (5pi)/2

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

Differentiate w.r.t. x the function in cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))],0ltxltpi/2