Home
Class 12
MATHS
If sin^4theta+cos^4theta-sinthetacosthet...

If `sin^4theta+cos^4theta-sinthetacostheta=0, x in [0,pi] `. then find the value of `(8s)/pi` (where s is the sum of the solutions of the given equation)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^4 \theta + \cos^4 \theta - \sin \theta \cos \theta = 0 \) for \( \theta \) in the interval \([0, \pi]\) and find the value of \( \frac{8s}{\pi} \), where \( s \) is the sum of the solutions, we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^4 \theta + \cos^4 \theta - \sin \theta \cos \theta = 0 \] We can express \( \sin^4 \theta + \cos^4 \theta \) using the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Substituting this back into the equation gives: \[ 1 - 2\sin^2 \theta \cos^2 \theta - \sin \theta \cos \theta = 0 \] ### Step 2: Simplify the equation We can rearrange the equation: \[ 1 - \sin \theta \cos \theta - 2\sin^2 \theta \cos^2 \theta = 0 \] Next, we can let \( x = \sin \theta \cos \theta \). Then, using the double angle identity, we have: \[ \sin 2\theta = 2\sin \theta \cos \theta \implies x = \frac{1}{2} \sin 2\theta \] Thus, we can rewrite \( \sin^2 \theta \cos^2 \theta \) as: \[ \sin^2 \theta \cos^2 \theta = \left(\frac{1}{2} \sin 2\theta\right)^2 = \frac{1}{4} \sin^2 2\theta \] Substituting this into the equation gives: \[ 1 - x - \frac{1}{2} x^2 = 0 \] ### Step 3: Solve the quadratic equation Now we have a quadratic equation in \( x \): \[ \frac{1}{2} x^2 + x - 1 = 0 \] Multiplying through by 2 to eliminate the fraction: \[ x^2 + 2x - 2 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)} = \frac{-2 \pm \sqrt{4 + 8}}{2} = \frac{-2 \pm \sqrt{12}}{2} = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3} \] Thus, the solutions for \( x \) are: \[ x_1 = -1 + \sqrt{3}, \quad x_2 = -1 - \sqrt{3} \] ### Step 4: Determine valid solutions Since \( x = \sin \theta \cos \theta \) must be in the range \([-1/2, 1/2]\), we check the values: - For \( x_1 = -1 + \sqrt{3} \approx 0.732 \) (not valid) - For \( x_2 = -1 - \sqrt{3} \approx -2.732 \) (not valid) Thus, we only consider: \[ \sin 2\theta = 1 \implies 2\theta = \frac{\pi}{2} + 2k\pi \implies \theta = \frac{\pi}{4} + k\pi \] For \( k = 0 \), \( \theta = \frac{\pi}{4} \) is valid in \([0, \pi]\). ### Step 5: Calculate the sum of solutions The only solution in the given interval is \( \theta = \frac{\pi}{4} \). Thus, the sum of the solutions \( s = \frac{\pi}{4} \). ### Step 6: Find the value of \( \frac{8s}{\pi} \) Now we compute: \[ \frac{8s}{\pi} = \frac{8 \cdot \frac{\pi}{4}}{\pi} = \frac{8}{4} = 2 \] ### Final Answer The value of \( \frac{8s}{\pi} \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If cos theta+sec theta=-2 for theta in[0,2 pi] then find the value of sin^(8)theta+cos^(8)theta

If 2sin^(2)theta=3cos theta, where 0<=theta<=2 pi, then find the value of theta

If sin theta+cos theta=0 , theta in[0,2 pi] , then the sum of all possible solutions is

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

If cos^2 theta - sin^2 theta = 1/3 , where 0 le theta le pi/2 , then the value of cos^4 theta - sin^4 theta is

If 2cosx(4sin(pi/4+x) sin(pi/4-x)-1)=1 then for x in [0,pi] then the number of solution s is n ,and the sum of solutions is s then find the value of (n,s)

If tan theta=-(3)/(4) and (pi)/(2)

Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0} , then the sum of the equations elements of S is .

If 8cos2 theta+8sec2 theta=65,0

If sin theta = (5)/(13), 0 lt theta lt (pi)/(2) then find the value of following. sin 4 theta