Home
Class 12
MATHS
lim(x to oo)(sqrt(x^2-x+1)-ax)=b Find th...

`lim_(x to oo)(sqrt(x^2-x+1)-ax)=b` Find the value of `2(a+b)` is

A

-3

B

-1

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} (\sqrt{x^2 - x + 1} - ax) = b \), we will follow these steps: ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{x \to \infty} (\sqrt{x^2 - x + 1} - ax) = b \] ### Step 2: Rationalize the Expression To simplify the limit, we can rationalize the expression by multiplying the numerator and denominator by the conjugate: \[ \lim_{x \to \infty} \frac{(\sqrt{x^2 - x + 1} - ax)(\sqrt{x^2 - x + 1} + ax)}{\sqrt{x^2 - x + 1} + ax} \] This gives us: \[ \lim_{x \to \infty} \frac{x^2 - x + 1 - a^2x^2}{\sqrt{x^2 - x + 1} + ax} \] ### Step 3: Simplify the Numerator Now, simplify the numerator: \[ x^2 - x + 1 - a^2x^2 = (1 - a^2)x^2 - x + 1 \] ### Step 4: Analyze the Denominator The denominator becomes: \[ \sqrt{x^2 - x + 1} + ax \] As \( x \to \infty \), we can approximate \( \sqrt{x^2 - x + 1} \) as \( x \) (since \( x^2 \) dominates): \[ \sqrt{x^2 - x + 1} \sim x \] Thus, the denominator simplifies to: \[ x + ax = (1 + a)x \] ### Step 5: Combine and Simplify the Limit Now we can rewrite the limit: \[ \lim_{x \to \infty} \frac{(1 - a^2)x^2 - x + 1}{(1 + a)x} \] Dividing every term in the numerator by \( x \): \[ \lim_{x \to \infty} \frac{(1 - a^2)x - 1 + \frac{1}{x}}{1 + a} \] ### Step 6: Evaluate the Limit As \( x \to \infty \), the terms \( -1 \) and \( \frac{1}{x} \) become negligible: \[ \lim_{x \to \infty} \frac{(1 - a^2)x}{1 + a} = b \] For this limit to exist and be finite, we need \( 1 - a^2 = 0 \), which implies: \[ a^2 = 1 \quad \Rightarrow \quad a = 1 \text{ or } a = -1 \] ### Step 7: Determine the Value of \( b \) If \( a = 1 \): \[ b = \lim_{x \to \infty} \frac{0}{1 + 1} = 0 \] If \( a = -1 \): \[ b = \lim_{x \to \infty} \frac{(1 - 1)x}{1 - 1} \text{ (undefined)} \] Thus, we take \( a = 1 \) and \( b = 0 \). ### Step 8: Calculate \( 2(a + b) \) Now we find: \[ 2(a + b) = 2(1 + 0) = 2 \] ### Final Answer The value of \( 2(a + b) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2-1))

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

If lim_(x to oo) (sqrt(x^(2) -x+1) -ax)=b , then the ordered pair (a, b) is :

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

lim_(x rarr oo)(sqrt((x+a)(x+b))-x)

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

lim_(x rarr oo)(sqrt(x-a)-sqrt(x-b))