Home
Class 12
MATHS
Let a curve P:(y-2)^2=x-1 If a tangent i...

Let a curve `P:(y-2)^2=x-1` If a tangent is drawn to the curve P at the point whose ordinate is 3 then the area between the tangent , curve and x-asis is

A

9

B

11

C

`9/2`

D

`11/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

The equation of tangent to the curve y=x^(2)+4x at the points whose ordinate is -3 are

Find the slope of the tangent to the curve y=x^(3)-3x+2 at the point whose x-coordinate is 3 .

Find the equation of tangent to the curve ? y=x^(2) + 4x at the point whose ordinate is 5

Find the slope of the tangent to curve y=x^(3)-x+1 at the point whose x-coordinate is 2 .

Find the slope of the tangent to the curve y=3x^(2)-4x at the point, whose x - co - ordinate is 2.

1.Find the slope of tangent to the curve y=3x^(2)-6 at the point on it whose x - coordinate is 2.

Equation of the tangent to the curve y=2-3x-x^(2) at the point where the curve meets the Y -axes is

The equation of tangent to the curve y=x^(3)-x^(2)-1 at the point whose absicissa is -2 is