Home
Class 12
MATHS
When 0 lt x lt 1 , y=1/2x^2+2/3x^3+3/4x^...

When `0 lt x lt 1 , y=1/2x^2+2/3x^3+3/4x^4+ . . . ` Then the value of `e^(1-y)` at `x=1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( e^{1-y} \) at \( x = \frac{1}{2} \), where \[ y = \frac{1}{2} x^2 + \frac{2}{3} x^3 + \frac{3}{4} x^4 + \ldots \] ### Step 1: Express \( y \) in a more manageable form We can observe that the series for \( y \) can be rewritten as: \[ y = \sum_{n=2}^{\infty} \frac{n-1}{n} x^n \] This can be separated into two parts: \[ y = \sum_{n=2}^{\infty} x^n - \sum_{n=2}^{\infty} \frac{x^n}{n} \] ### Step 2: Calculate the first sum The first sum, \( \sum_{n=2}^{\infty} x^n \), is a geometric series: \[ \sum_{n=2}^{\infty} x^n = x^2 + x^3 + x^4 + \ldots = \frac{x^2}{1-x} \quad \text{for } 0 < x < 1 \] ### Step 3: Calculate the second sum The second sum, \( \sum_{n=2}^{\infty} \frac{x^n}{n} \), can be recognized as part of the Taylor series expansion for \( -\ln(1-x) \): \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \quad \Rightarrow \quad \sum_{n=2}^{\infty} \frac{x^n}{n} = -\ln(1-x) - x \] ### Step 4: Combine the results Now we can combine the two parts: \[ y = \frac{x^2}{1-x} + \ln(1-x) + x \] ### Step 5: Substitute \( x = \frac{1}{2} \) Now, we substitute \( x = \frac{1}{2} \): \[ y = \frac{\left(\frac{1}{2}\right)^2}{1 - \frac{1}{2}} + \ln\left(1 - \frac{1}{2}\right) + \frac{1}{2} \] Calculating each term: 1. \( \frac{\left(\frac{1}{2}\right)^2}{1 - \frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} \) 2. \( \ln\left(1 - \frac{1}{2}\right) = \ln\left(\frac{1}{2}\right) = -\ln(2) \) 3. \( \frac{1}{2} \) So, \[ y = \frac{1}{2} - \ln(2) + \frac{1}{2} = 1 - \ln(2) \] ### Step 6: Calculate \( e^{1-y} \) Now, we need to find \( e^{1-y} \): \[ 1 - y = 1 - (1 - \ln(2)) = \ln(2) \] Thus, \[ e^{1-y} = e^{\ln(2)} = 2 \] ### Final Answer The value of \( e^{1-y} \) at \( x = \frac{1}{2} \) is \( \boxed{2} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt 1 and y=(1)/(2) x^(2) +(2)/(3) x^(3) +(3)/(4) x^(4) + ……. , then the vlaue of e^(1+y) at x=(1)/(2) is :

Find the value of 3/2x^2+5/3x^3+7/4x^4 +. . . +oo if 0 ltx lt 1

Let y=y(x) be the solution of the differential equation (dy)/(dx)=(y+1) ((y+1)e^(x^(2)/2)-x), 0 lt x lt 2.1, with y(2)=0. Then the value of (dy)/(dx) at x=1 is equal to .

If 0 lt x lt 1 , then (3)/(2)x^(2)+(5)/(3)x^(3)+(7)/(4)x^(4)+ ..............is equal to

If x lt 4 " and " x, y in {1, 2, 3, .., 10} , then find the number of ordered pairs (x,y).

If x,y are real and (x-1)^(2)+(y-4)^(2)=0 then the value of x^(3)+y^(3) is