Home
Class 12
MATHS
suppose x1, and x2 are the point of maxi...

suppose `x_1,` and `x_2` are the point of maximum and the point of minimum respectively of the function `f(x)=2x^3-9ax^2 + 12a^2x + 1` respectively, `(a> o)` then for the equality `x_1^2 = x_2` to be true the value of `'a'` must be

A

0

B

2

C

1

D

`(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

`6(x^(2) -3ax +2a^(2))`
`= 6 (x-a) (x-2a), a gt 0`
`x=a` is point of maxima
`x=2a ` is point of minima
`:.a^(2)=2a`
`rArr a=0 or a = 2`
but `a gt 0 rArr a =2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively, (a>0).If x_(1)^(3)=8x_(2) then the sum of all possible values of 'a' is

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively, .If x_(1)^(3)=8x_(2) then the sum of all possible values of 'a' is

Let x_(1) and x_(2) are the points of maximum and minimum of function f(x)=2x^(3)-9ax^(2)+12a^(2)x+1 respectively. If x_(1)^(3)=8x_(2) then the sum of all possible values of a is

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

Find the maximum and minimum values of the function : f(x)=2x^(3)-15x^(2)+36x+11.

Find the points of maximum ( local maximum ) and minimum ( local minimum ) of the function f(x)=x^(3)-3x^(2)-9x ?

Separate the intervals of monotonocity for the function f(x)=-2x^(3)-9x^(2)-12x+1

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

The sum of the maximum and minimum values of the function f(x)=(1)/(1+(2cos x-4sin x)^(2)) is