Home
Class 9
MATHS
If (a+b+c)(a-b+c)=a^2+b^2+c^2 then show ...

If `(a+b+c)(a-b+c)=a^2+b^2+c^2` then show that a,b,c are in continued proportion.

Promotional Banner

Similar Questions

Explore conceptually related problems

a,b,c are in continued proportion.If a=3 and c=27 then find b.

If a/b=b/c and a,b,c>0 then show that, (a+b+c)(b-c)=ab-c^2

a, b, c are in continued proportion. If a =3and c = 27 then find b.

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)/(ab)=(a+c)/b

Solve the following: If frac{sinA}{sinC} = frac{sin(A-B)}{sin(B-C)} , then show that a^2, b^2, c^2 are in A.P.

In /_\ABC if acos^2(frac{C}{2})+c cos^2(frac{A}{2}) = frac{3b}{2} then prove that a,b,c are in A.P.

If a, b, c are in A.P. and a^2 , b^2 , c^2 are in H.P then

In A B C ,= if (a+b+c)(a-b+c)=3a c , then find /_Bdot

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)(b^2+c^2)=(ab+bc)^2