Home
Class 9
MATHS
जर (by+cz)/(b^(2)+c^(2)) =(cz+ax)/(c^(2)...

जर `(by+cz)/(b^(2)+c^(2)) =(cz+ax)/(c^(2) +a^(2)) =(ax+by)/(a^(2) +b^(2))` तर `x/a=y/b=z/c ` हे सिंद्ध करा.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (by+cz)/(b^2+c^2)=(cz+ax)/(c^2+a^2)=(ax+by)/(a^2+b^2) then prove that x/y=y/b=z/c

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2) =

Find the tangent of the angle between the lines whose intercepts on the axes are respectively a ,-b and b ,-a ............... A) tan ^(-1)""(a^(2) +b^(2))/(ab) B) tan ^(-1)""(b ^(2) -a^(2))/(2) C) tan ^(-1)""(b^(2) -a^(2))/(2ab) D) tan ^(-1)""(b^(2) -a^(2))/(ab)

If y = log(ax + b) , then (d^2 y)/(dx^2) is

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0

If (y+z)/(a)=(z+x)/(b)=(x+y)/c then show that (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c)

If (y+z)/(a)=(z+x)/(b)=(x+y)/© then show that (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c)

The equation of line whose midpoint (x_(1),y_(1)) is in between the axes, is.............. A) (x)/(x_(1))+ (y)/(y_(1)) =2 B) (x)/(x_(1))+ (y)/(y_(2)) =1/2 C) (x)/(x_(1))+ (y)/(y_(2)) =1/2 D) None of these

If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is