Home
Class 9
MATHS
If a/b=b/c and a,b,c>0 then show that, (...

If `a/b=b/c` and a,b,c>0 then show that, `(a^2+b^2)(b^2+c^2)=(ab+bc)^2

Promotional Banner

Similar Questions

Explore conceptually related problems

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)/(ab)=(a+c)/b

If a/b=b/c and a,b,c>0 then show that, (a+b+c)(b-c)=ab-c^2

If a/b =b/c and a,b, c gt 0 , then prove that (a+b)^2/(b+c)^2 = (a^2 +b^2)/(b^2 +c^2)

If b is the geometric mean of a and c, then show that a^2 b^2 c^2 [1/a^3 +1/b^3 +1/c^3] =a^3 +b^3 +c^3 .

If a,b,c,d are in proportion, then prove that (a^2+ab+b^2)/(a^2-ab+b^2)=(c^2+cd+d^2)/(c^2-cd+d^2)

With usual notation show that (c^2-a^2+b^2)tanA = (a^2-b^2+c^2)tanB = (b^2-c^2+a^2)tanC

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a,b,c re in continued proportion then show that a/c=(a^2+ab+b^2)/(b^2+bc+c^2)

If a:b=3:1 and b:c=5:1 , then find the value of a^2/(7bc)