Home
Class 9
MATHS
If a/b =b/c and a,b, c gt 0, then prove ...

If `a/b =b/c` and a,b, `c gt 0`, then prove that `(a+b)^2/(b+c)^2 = (a^2 +b^2)/(b^2 +c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)(b^2+c^2)=(ab+bc)^2

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)/(ab)=(a+c)/b

If a/b=b/c and a,b,c>0 then show that, (a+b+c)(b-c)=ab-c^2

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a,b,c,d are in proportion, then prove that (a^2+ab+b^2)/(a^2-ab+b^2)=(c^2+cd+d^2)/(c^2-cd+d^2)

If a,b,c are in continued proportion, then prove that (b/(b+c)=(a-b)/(a-c)

If a,b,c,d are in proportion, then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

If a,b,c are in continued proportion, then prove that a/(a+2b)=(a-2b)/(a-4c)

If a,b,c re in continued proportion then show that a/c=(a^2+ab+b^2)/(b^2+bc+c^2)