Home
Class 11
MATHS
cos^2 pi/8 +cos^2 (3pi)/8 +cos^2 (5pi)/8...

`cos^2 pi/8 +cos^2 (3pi)/8 +cos^2 (5pi)/8 +cos^2 (7pi)/8`=

A

1

B

`-1`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is

cos^2(pi/12)+cos^2(pi/4)+cos^2((5pi)/12)=

Prove the following: (1+cos (pi/8))(1+cos((3pi)/8))(1+cos ((5pi)/8))(1+cos ((7pi)/8))=1/8

Using tables evaluate the following: cos^2 0+cos^2 (pi/6)+cos^2 (pi/3)+cos^2 (pi/2)

Prove that: sin^(2) (pi/8) +sin^(2) ((3pi)/8) +sin^(2)((5pi)/8)+sin^(2)((7pi)/8)=2

Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2

cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

The value of cos((2pi)/7)+cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=

If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=-l/2 Find the value of l