Home
Class 14
MATHS
x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^...

`x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2))` is divisible by

A

`(y-z)` only

B

`(z-x)` only

C

Both (y-z) and (z-x)

D

neither (y-z) nor (z-x)

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

Factorization by taking out the common factors: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))

Factorize each of the following expressions: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))