Home
Class 14
MATHS
If cos A = tan B, cos B = tan C and cos ...

If `cos A = tan B`, `cos B = tan C` and cos `C = tan A` then show that `sin A = sin B = sin C = 2sin 18^circ`.

A

`(sqrt5-1)/4`

B

`(sqrt-1)/2`

C

`(sqrt3-1)/4`

D

`(sqrt3-1)/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos A) / (c sin B) + (cos B) / (a sin C) + (cos C) / (b sin A) =

If cos(A+B) sin (C-D) = cos (A-B) sin (C+D) , then show that tan A tan B tan C + tan D =0

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If sin A=a cos B and cos A=b sin B then tan^(2)B =

If quad tan A=(x sin B)/(1-x cos B) and tan B=(y sin A)/(1-y cos A) then (sin A)/(sin B)=